
Recent and Planned Language Extensions in pqR

Radford M. Neal, University of Toronto

Dept. of Statistical Sciences and Dept. of Computer Science

http://www.cs.utoronto.ca/∼radford

http://radfordneal.wordpress.com

http://pqR-project.org

RIOT2017, Brussels

Good Language Features Should. . .

Lead to reliable programs. The simple, easy, obvious way of doing

something should produce the correct result. An R design flaw:

A <- M[i:j,]

doesn’t always work. Instead, you need

A <- M[i-1+seq_len(j-i+1),,drop=FALSE]

Lead to efficient programs. The obvious way should be the efficient way.

It’s not good to make the obvious way be slow, and introduce tricky ways

for “experts” that are faster, such as. . .

seq.int, rep.int, .rowSums, anyNA, v[1L] instead of v[1]

Be clear, concise, and beautiful. With a bit of thought, there should be

no need to trade off this for the previous two.

Language Extensions in pqR

Implemented recently:

• A set of related changes addressing R’s design flaws surrounding the

“:” operator and dimension dropping.

• New forms of the for statement.

Planned:

• Some ways to write code that is shorter, clearer, and less ugly.

• A general syntactical mechanism for adding “flags” to formal and actual

arguments, and several uses of this mechanism.

Possible:

• A scheme for handling quoted arguments, including their use in

achieving the effect of “pass by reference”.

• Automatic differentiation, needed for gradient-based methods.

• Automatic incremental computation, very useful for MCMC.

Need for a Sequence Operator that Operates Correctly

Problem: Using i:j to create an increasing sequence does not produce a

zero-length sequence when j is less than i. This is very annoying, and leads

to buggy code — including bugs in code maintained by R Core.

Using seq len is clumsy and not sufficiently general.

Another problem: 1:n-1 does not start at 1 — poorly-chosen precedence.

Solution: A new operator, which produces only increasing sequences,

including zero-length ones, and which has lower precedence than the

arithmetic operators.

New Sequence Operator “..” in pqR

Examples of its use:

for (i in 1..n-1) A[i, i..i+1] <- 0

v[1..n] <- A[1..n,i]

if (any (v %in% (i..j))) stop("something not right")

But... i..j is a valid symbol!

Yes. It’s necessary to disallow symbols with consecutive dots, except at the

beginning or end.

Some ambiguities:

i..(j+1) is a call of the function i..

i..-j subtracts j from i..

Putting spaces around .. unambiguously makes it the sequence operator.

There would be no ambiguities if multiple dots at the end of a symbol were

disallowed, but they do get used. . .

Compatibility Issues with ..

Explicit use of .. within a symbol seems to be fairly rare, but can be

accomodated in old code by setting an option to not parse the .. operator.

The make.names function converts illegal characters to dots, which could

produce a symbol with consecutive dots — it now collapses such sequences

to one dot.

Similarly, make.unique could create a name with consecutive dots, when

adding a dot as a separator — it now doesn’t add a dot if one is already

there.

Stopping Inadvertent Dimension Dropping

Problem: We want to create a sub-array of A with all its columns, but

only those rows whose indexes are in v. We try to do that with A[v,].

It usually works, but we get a vector rather than a matrix if either v has

length one or A has only one column. So there’s lots of buggy code. Adding

drop=FALSE everywhere works, but is very tedious and unreadable.

Start of a solution:

First, pqR defines “_” to be a special object equivalent to a missing

argument. When used as an array subscript it selects all of a dimension,

without ever dropping it.

Writing “_” for a missing argument is also clearer than writing nothing.

Second, pqR doesn’t drop a dimension if the index is a 1D non-logical array,

even if it has length one. This probably won’t break much existing code.

Result: Now A[array(v),_] always produces a matrix.

Make the New Sequence Operator Produce a 1D Array

Many of the vectors used to index arrays are produced by a sequence

operator. The new .. operator in pqR is defined to produce a 1D array,

so we don’t have to use array.

Now A[1..n,_] produces a matrix with one row when n is one, and a

matrix with zero rows when n is zero.

Similarly, A3[1..n,1,1..m] delivers a 2D matrix even when n and/or m is

zero or one. Note that adding drop=FALSE would not solve the problem

here, since it would always produce a 3D array.

An Unfortunate Impossibility:

Zero-Length Vectors Can’t Contain Negative Elements

Problem: If ix is a vector of positive integers, v[-ix] gives a vector with

all the elements of v except those in ix.

Well, almost. Unfortunately, it doesn’t work when ix is of length zero!

Possible solution (not yet in pqR):

Define a function except(ix) that returns ix with some suitable attribute

attached that signifies exclusion rather than inclusion.

Now v[except(ix)] works correctly when ix happens to have length zero.

Also, it can now work with indexes that are names.

It’s maybe clearer too. Plus, we can now find bugs more easily, if we make

zero and negative numbers in ix illegal.

New Forms of the For Statements

pqR now implements several new forms of the for statement:

for (i along v) S

means for (i in seq_along(v)) S

for (i,j along M) S

means for (j in 1..ncol(M)) for (i in 1..nrow(M)) S

for (i down M) S

means for (i in 1..nrow(M)) S

for (j across M) S

means for (j in 1..ncol(M)) S

(Except pqR doesn’t handle methods for length and dim yet, but will soon.)

These are non-essential conveniences, but they have no backwards

compatibility issues — along, down, and across (and also in) don’t need

to be reserved words.

Some Planned Syntactic Sugar and Spice

• Matrix / data frame interchangeability: For any matrix, X, make

X$fred equivalent to X[,"fred"]

• Non-ugly attribute references: For any non-S4 object, x, make

x@fred equivalent to attr(x,"fred")

x@fred <- v equivalent to attr(x,"fred") <- v

• More convenient way to create lists:

L $$ a=1 $$ b=2 # equivalent to c(L,list(a=1,b=2))

$$ ab $$ cd $$ ef # equivalent to list(ab=ab,cd=cd,ef=ef)

• More convenient way to tack on attributes:

1..6 @@ dim=c(2,3) @@ class="fred"

Vector / Array Constructors

The following possible syntax for constructing vectors or arrays is

reminiscent of Python:

v <- [7, 1, 9]

result is like v <- c(7,1,9) but has 1D dim attribute of 3.

a <- [x, y, z]

dimensions/length of x, y, and z must match

result may be like c(x,y,z) or rbind(x,y,z)

dim(a)[1] will be always be 3.

M <- [[x,0,0],[0,y,0],[0,0,z]]

Creates a 3-by-3 matrix. No ambiguity with [[.

x, y, and z must be scalars.

Flags for Arguments

Several needs could be addressed by allowing specification of certain “flags”

on formal or actual arguments of functions.

Here’s an example, using a \notlazy flag that disables lazy evaluation,

and a counterpart \lazy that enables it.

Define a function in which argument top defaults to lazy,

and argument bottom to notlazy

f <- function (top, bottom \notlazy) ...

f (g(), h()) # h() evaluated immediately,

g() only when argument is used

f (g() \notlazy, h()) # g() and h() both evaluated

immediately

f (g(), h() \lazy) # g() and h() both evaluated

only when argument is used

Argument Flags Relating to Matching and Evaluation

Here are some possible flags regarding argument matching and evaluation:

lazy, notlazy Is lazy evaluation used for this argument?

exact, notexact Must the argument name match exactly?

quoted, notquoted Should references default to the expression?

ignorable Can this (actual) argument be ignored?

If x is a quoted argument, x would give the expression passed, and @x would

give its value. Some examples:

showmean <- function (x \quoted)

cat ("The mean of", x, "is", mean(@x))

sym_ave <- function (M \quoted, i, j)

(@M[i,j] + @M[j,i]) / 2

This is implemented, without the new syntax, in the quotedargs package

I’ve put on CRAN.

Another Use of Quoted Arguments

One could apply the quoted arguments idea to implement call-by-reference

(really call-by-name, in Algol 60 terms).

Here’s an example:

zero_corners <- function (M \quoted) {

@M[1,1] <- 0

@M[1,ncol(@M)] <- 0

@M[nrow(@M),1] <- 0

@M[nrow(@M),ncol(@M)] <- 0

}

A call of zero_corners(A) would modify the variable A in the caller’s

environment.

This isn’t in the quotedargs package. (It’s not possible with the current

implementation of subset assignment.)

Flags for Checking Argument Validity

The flags below could be used in a facility for conveniently and quickly

checking whether arguments of functions are valid (all imply notlazy):

integer Must be convertable without loss to type integer

real Must be convertable without loss to type real

character Must be convertable without loss to type character

scalar Must be a vector of length one

vector Must be a vector with no dimensions or one dimension

matrix Must be a matrix (two-dimensional array)

positive All elements must be greater than zero

noNA Must not have NA or NaN values

Flags could be combined: f <- function (x \scalar \integer \noNA)

There’d be no “not” forms, since we don’t want callers overriding checks.

Callers could add extra checks — eg, fun (x \integer) to give an error if

x has non-integer elements, even if fun doesn’t check. And in particular,

A <- B \real \matrix would check that B is a real matrix before assigning.

More Possible Language Extensions

• Support for automatic differentiation. Example:

loglik <- with_gradient (theta) {

ll <- 0

for (d in data) ll <- ll + log(model_prob(d,theta))

ll

}

model_prob <- function (obs,theta)

if (obs==1) theta else 1-theta

The loglik variable will be assigned a value with a gradient attribute.

• Support for quickly recomputing a function of a vector theta after only

one element of theta is changed. Would be very useful for MCMC, but

I’m not sure how to do it.

• A way to return more than one item without putting them all in a list.

Would allow what’s returned to be extended without invalidating

existing calls, like argument defaults allow what’s passed to be extended.

