
CSC 120 (R Section)— Lab Exercise 10

This is a non-credit exercise, which you do not hand in.
You may work on your own or together with another student, as you please.

In this lab, you will warm up with general practice writing a simple function.

Next, you will practice writing a function in two ways, with a loop and using vector oper-
ations, and in devising test cases that check whether it works.

Finally, you will modify the set of functions that take an object-oriented approach to
drawing things used as an example in the Week 11 lectures, changing the way that boxes
are represented, and then adding a new class of object.

Practice writing a simple function.

Write a function called multiply_above_diagonal that takes as its only argument a square
matrix (you don’t have to check this), and returns a single number that is the product of
all the elements in the matrix that are above the diagonal (ie, all those in positions where
the column index is greater than the row index). Note that the product of zero factors is
defined to be one.

Here is the correct output for two test cases:

> Y <- matrix (1:16, nrow=4, ncol=4)

> Y

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

> multiply_above_diagonal(Y)

[1] 1228500

> multiply_above_diagonal(matrix(5,nrow=1,ncol=1))

[1] 1

Writing a function in two ways, and testing it.

Write a function called is.not.decreasing that takes a numeric vector as its only argu-
ment (you can assume it’s a numeric vector without checking) and returns TRUE if this
vector is in non-decreasing order and FALSE if at least one element is less than an earlier
element. You may assume that none of the elements are NA.

There are several ways of writing such a function. Perhaps the most straightforward way is
to use a loop over the elements of the vector, but it is also possible to use vector operations
rather than a loop.



You should try using a loop first. A while loop may be appropriate, and using a variable
called answer_is_known holding a logical value may be useful in deciding when the loop
should end (or there are other ways to do something similar).

Then see if you can do it without a loop, using comparison operations on vectors.

Finally, can you think of a third, rather different, way to write this function?

You should also come up with good test cases to see if the various versions of your function
work. Try some typical cases, and also some peculiar cases, where your function might fail
even it if usually works.

Extending the example from Week 11’s lecture.

Finally, you should extend the example of object-oriented programming in the Week 11
lecture slides, by changing the representation of box objects, and adding a new “plus”
object.

The functions from the lecture slides are available at

http://www.cs.utoronto.ca/~radford/csc120/drawfuns.r

and the script that was used (in slightly different form) to produce the results in the lecture
slides is at

http://www.cs.utoronto.ca/~radford/csc120/drawscript.r

As a first exercise, modify the functions for the “box” class to represent a box by a list
whose elements are the same as the arguments of the new_box function. This may require
changing new_box, draw.box, rescale.box, and translate.box. But it should not require
any change to the R code that uses boxes, in the script file.

As a second exercise, try to add a new “plus” object, which looks like a plus sign. You
should write a new_plus function that creates an object of class "plus", given the x and
y coordinates of the centre of the plus (where the two lines cross) and how far the ends
of the plus extend away from the centre (the same for the horizontal and vertical lines).
You should also write a draw.plus function to provide a draw method. You should then
be able to try drawing plusses. Once you have this working, you can write rescale.plus

and translate.plus methods for objects of this class, and try them out. You should also
be able to call the smaller function from the lecture with a plus object as its argument.

An extra bonus exercise: Implement a new generic function for these objects, called
rotate90, that rotates an object by 90 degrees counterclockwise. You may find it con-
venient to define a default method for this generic function. For which classes of objects
could you use the default? For which will you need to write a special method?


