
CSC 120 (R Section)— Lab Exercise 11

This is a non-credit exercise, which you do not hand in.
You may work on your own or together with another student, as you please.

This is the last lab. You might want to work on any exercises from last week’s or earlier
labs that you didn’t get to then. I’ve also included some more exercises here for general
programming practice.

Swap years born and died entered incorrectly.

Suppose we have a data frame containing data on people, that has columns born and died

that are supposed to be the years that each person was born and died. However, it seems
that for some people, these were mistakenly swapped. Write a function swap_born_died

that swaps these dates for all people for which the year they are said to have been born is
later than the year they are said to have died.

For example:

> d1 <- data.frame (list(sex=c("M","F","F","M","M"),

+ born=c(1897,1941,1902,1910,1923),

+ died=c(1977,1902,1988,1931,1888))

+ )

> d1

sex born died

1 M 1897 1977

2 F 1941 1902

3 F 1902 1988

4 M 1910 1931

5 M 1923 1888

> swap_born_died(d1)

sex born died

1 M 1897 1977

2 F 1902 1941

3 F 1902 1988

4 M 1910 1931

5 M 1888 1923

You can try solving this using a loop, and without a loop (using vector operations).

Once you have this version working, you can try modifying your function so that it doesn’t
try to swap born and died if either of these is NA. You’ll need to come up with a data
frame with some NA values to test it on.



Create a matrix from two string vectors.

Write a function called string_matrix_from_string_vectors, which takes two vectors
of strings as arguments, and returns a matrix of strings with number of rows equal to
the length of the first argument and number of columns equal to the length of the second
argument. The element in row i and column j should be a string of two characters — the
first character of element i of the first argument and the first character of element j of the
second argument. The row names of the matrix should be set to the first argument and
the column names to the second argument.

For example:

> string_matrix_from_string_vectors(c("apple","orange","peach"),c("joe","mary"))

joe mary

apple "aj" "am"

orange "oj" "om"

peach "pj" "pm"

Recall that you can use paste to put strings together and substring to extract part of a
string. Use help for the details if you don’t remember them.

Find the length of the longest run in a vector.

Write a function find_longest_run that takes one argument that is a vector, and returns
the length of the longest “run” in this vector. A “run” is a sequence of consecutive values
that are all the same. You can assume that none of the elements of the vector are NA.

For example:

> longest_run(c(5,1,1,3,2,2,2,7))

[1] 3

> longest_run(c(5,1,3,3,2,7))

[1] 2

> longest_run(c(8,3,1,3,8))

[1] 1

> longest_run(1:1000)

[1] 1

> longest_run(7)

[1] 1


