
CSC 120 (R Section)— Lab Exercise 8

This is a non-credit exercise, which you do not hand in.
You may work on your own or together with another student, as you please.

Recall that in the lecture slides for this week there is a function that simulates a random walk,
which you can get from the course web page. In this lab, you will modify this function in
various ways, and write other funcitions that do things with random walks. The purpose is
to provide you with general practice writing R functions, and practice with random number
generation in particular. You’ll also learn a bit about random walks.

You should create a file that contains the functions you write, and another script file (or
several files) that starts by reading in these function definitions with source, and then uses the
functions to do things described below. You might also try out the functions just by typing in
the R console window.

Biased random walks. First, you should modify the random_walk function to create a
biased_random_walk function, for which the probability of going up and going down need not
be the same. It should take an additional argument that is the probability of going up. (Passing
0.5 for this argument should produce the same behaviour as the random_walk function.)

Try this function out with various values for the probability of going up, and see how the walks
it generates differ from a random walk with equal probabilities of going up or down. You can
plot a random walk with a simple command like plot(biased_random_walk(1000,0.7)).

Multiple random walks. To see how random walks vary, we would like to simulate many of
them. This can be done in several ways. You should write functions called random_walks_1,
random_walks_2, and random_walks_3 that all take two arguments — how many steps to take
for each of the random walks, and the number of random walks to simulate — and all return a
matrix with number of rows equal to the number of steps plus 1 and number of columns equal
to the number of random walks. Each column of this matrix contains the positions for one of
the random walks, starting with 0.

Make the probability of going up and going down both be 0.5 for these functions. Note that
the different random walks should be independent (ie, they don’t interact in any way).

The three functions will generate the random walks in different ways.

For random_walks_1, you should generate all of the first walk, then all of the second walk, etc.
This will require two loops, one inside the other, with the outer loop being over the different
walks, and the inner loop being over the steps for a walk. For random_walk_2, you should
reverse which is the inner loop and which is the outer loop, so that you generate all walks at
once, one step at a time. Try out both of these functions, for a fairly small number of steps
and small number of walks, after setting the random seed to some value with set.seed. Do
you get the same results? Why?

For the random_walks_3 function, you should also generate all walks at once, but with only one
loop (which goes over the steps of the walks). Instead of an inner loop, you should use random
generation of vectors and arithmetic on vectors to figure out what every walk is going to do
with one R statement. Recall that you can refer to a whole row of a matrix by just leaving
out the second subscript (eg, A[i,]). This works both for getting a row, and changing a row.



Recall also that you can compare a vector to a value and get a vector of FALSE/TRUE values,
which you can convert to 0/1 values with as.numeric.

Try out random_walks_3 after setting the random number seed. Is the result the same as either
random_walks_1 or random_walks_2?

Plotting multiple random walks. Now that you can generate multiple random walks, it
would be nice to be able to plot them all on a single plot. Write a function called plot_walks

that takes a matrix produced by one of the three random walks functions and plots all the
walks, in different colours.

There are several ways this might be done. One way is to first create an empty plot with
plot(c(),...) and then use points to add points for each walk, in different colours. (You
can use the colours identified by the integers 1, 2, etc.) You’ll need to set the axis ranges with
the xlim and ylim arguments to plot so that all the walks will fit on the plot. If walks is
the matrix with all the walks, min(walks) and max(walks) will give you the minimum and
maximum value in any of the walks.

Seeing how the standard deviation over walks changes. All the walks will be in the
same position at the beginning, since they all start at 0. After that, they will tend to get further
and further from each other. We can measure how spread out they are after some number of
steps by the standard deviation of their positions. Write a function called walk_sd that takes
as its argument a matrix of random walks, and returns a vector giving the standard deviation
of positions for these walks at each time. The R function sd finds the standard deviation of a
vector of numbers.

Try your walk_sd function out with 50 walks that each go for 1000 steps. How does the standard
deviation seem to change over time? Probability theory says it should increase according to the
square root of the number of steps. Try plotting that function and see how it compares with
the standard deviations you found. Then try it all again with a different random number seed.

Seeing how long it takes for a walk to reach some value. If we start our random walk at
0, we might wonder how many steps it will take before it first reaches some other value, say 4.
Write a function called steps_until_value that returns how many steps it takes a simulated
random walk to reach some value that is given as the argument to steps_until_value. You
shouldn’t try to save the whole random walk in this function, just find out how many steps it
takes before the specified value is reached.

Write another function called steps_dist that calls steps_until_value many times, and
returns a vector of its values. The arguments of this function should be the value to pass on to
steps_until_value and the number of times to call steps_until_value. Try this function
out with the target value being 4 and with 500 walks. What sort of distribution do you see for
the numbers you get?


