
CSC 120: Computer Science for the Sciences (R section)

Radford M. Neal, University of Toronto, 2015

http://www.cs.utoronto.ca/∼radford/csc120/

Week 12

Statistical Facilities in R

In this course, we’ve mostly looked at R as a programming language, and at

general programming concepts.

But R is most popular as a language for statistical applications. So it has many

special facilities for doing statistics. I’ll talk about some now.

Don’t worry if you don’t understand some of the statistical concepts — that’s OK

for this course. Though learning about R’s statistical facilities is one good way to

learn statistics in a hands-on way!

Standard Distributions and Associated Functions

R knows about quite a few probability distributions, for each of which it has an

abbreviation. These include:

unif Uniform distribution ranging from a given minimum to a given maximum.

norm Normal (Gaussian) distribution with given mean and standard deviation.

exp Exponential distribution with given rate.

binom Binomial distribution with given n and p.

pois Poisson distribution with given mean.

For each of these distributions, R provides four functions, whose names are the

distribution’s abbreviation preceded by d, p, q, or r. Here are their meanings,

illustrated for normal distributions: following:

dnorm Probability density function (PDF).

pnorm Cumulative Distribution Function (CDF).

qnorm Quantile (inverse CDF) function.

rnorm Random number generator.

The density function really the probability mass function when the distribution is

discrete (eg, dpois).

Examples for Normal Distributions

The dnorm, pnorm, and qnorm functions all take a numeric vector as their first

argument, followed by the mean (default 0) and standard deviation (default 1).

For example:

> dnorm (c(-2.5,0,2.5)) # Standard normal, default mean 0 and sd 1

[1] 0.0175283 0.3989423 0.0175283

> dnorm (c(-2.5,0,2.5),1,2) # Mean 1 and sd 2

[1] 0.04313866 0.17603266 0.15056872

> qnorm (0.025) # Some familiar numbers

[1] -1.959964

> pnorm (c(-2,-1,0,1,2))

[1] 0.02275013 0.15865525 0.50000000 0.84134475 0.97724987

The rnorm function generates random numbers from a normal distribution:

> rnorm(6)

[1] 0.5855288 0.7094660 -0.1093033 -0.4534972 0.6058875 -1.8179560

> rnorm(6,100,50)

[1] 131.50493 86.19079 85.79201 54.03390 94.18761 190.86560

Statistical Modeling in R

One big part of statistics is fitting a model to data. R has many functions for

doing this, but I’ll mention only lm, which fits a linear model.

Models in R are often specified using formulas, that say how one thing is

modelled in terms of other things.

For lm, we want to specify that some response variable is modelled as a linear

combination (plus noise) of some explanatory variables. This is done using a

formula such as

growth ~ ave_temp + fertilizer + variety

This might express that the amount by which some plant grows is linearly related

to the average temperature, the amount of fertilizer used, and a set of indicator

variables indicating the variety of the plant.

A Simple Example of a Linear Model

Here, I’ll show the results of a very simple linear model, relating the volume of

wood in a cherry tree to its girth (diameter of trunk). The data is in the data

frame trees that comes with R.

Here’s a plot of the data:

8 10 12 14 16 18 20

10
20

30
40

50
60

70

trees$Girth

tr
ee

s$
V

ol
um

e

Fitting the Model with lm

We can fit a linear model for volume given girth as follows:

> lm (trees$Volume ~ trees$Girth)

Call:

lm(formula = trees$Volume ~ trees$Girth)

Coefficients:

(Intercept) trees$Girth

-36.943 5.066

The result says that best fit model for the volume is

Volume = −36.943 + 5.066Girth + noise

We can get the same result with an abbreviated formula by saying the data comes

from the data frame trees:

lm (Volume ~ Girth, data=trees)

Using the Result of lm

The value returned by lm is an object of class "lm", which has special methods

for printing and other operations.

We can save the result, and then get the regression coefficients with coef.

> m <- lm (Volume ~ Girth, data=trees)

> coef(m)

(Intercept) Girth

-36.943459 5.065856

We could use these coefficients to predict the volume for a new tree, with girth of

11.6:

> coef(m) %*% c(1,11.6) # %*% will compute the dot product

[,1]

[1,] 21.82048

Getting More Details on the Model Fitted

We can also ask for more statistical details with summary:

> summary(m)

Call:

lm(formula = Volume ~ Girth, data = trees)

Residuals:

Min 1Q Median 3Q Max

-8.065 -3.107 0.152 3.495 9.587

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***

Girth 5.0659 0.2474 20.48 < 2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.252 on 29 degrees of freedom

Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331

F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

Plotting the Regression Line

We can also plot the regression line from the fitted model on top of a scatterplot

of the data, using abline(m):

8 10 12 14 16 18 20

10
20

30
40

50
60

70

trees$Girth

tr
ee

s$
V

ol
um

e

The plot shows some indication that the relationship is actually curved.

Trying a Quadratic Model

Let’s try fitting volume to both girth and the square of girth:

> Girth_squared <- trees$Girth^2

> summary (lm (trees$Volume ~ trees$Girth + Girth_squared))

Call:

lm(formula = trees$Volume ~ trees$Girth + Girth_squared)

Residuals:

Min 1Q Median 3Q Max

-5.4889 -2.4293 -0.3718 2.0764 7.6447

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.78627 11.22282 0.961 0.344728

trees$Girth -2.09214 1.64734 -1.270 0.214534

Girth_squared 0.25454 0.05817 4.376 0.000152 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.335 on 28 degrees of freedom

Multiple R-squared: 0.9616, Adjusted R-squared: 0.9588

F-statistic: 350.5 on 2 and 28 DF, p-value: < 2.2e-16

R Packages

The basic features of R can be extended using “packages” of function definitions,

data sets, etc.

These packages are available in several ways:

• A few packages come with R and are available for use by default. One such is

the stats package that defines the lm function.

• Some more packages come with R, but have to be loaded manually before you

can use them. An example is the survival package for analysing survival

data. To use it, say library(survival).

• Many other packages (thousands) are available for installation from package

repositories, to which many people have contributed. The CRAN repository

is the best-known, and is the default when you try to install such packages

using the install.packages function.

• You can write your own packages.

Some Things Packages May Do

• Provide general extensions to the R language.

Example: magrittr defines an operator %>% for “piping” data from one

function to another.

• Provide convenient ways of interacting with R.

Example: knitr, which we’ve been using to produce convenient output.

• Interface to other software.

Example: foreign provides ways of reading data from other statistics

packages (eg, SAS) into R.

• Provide more elaborate ways of producing graphical output.

Example: ggplot2 is a very popular way of producing graphs.

• Provide additional statistical methods.

Example: tgp implements “Treed Gaussian Process” models, that can model

how a response variable relates to explanatory variables more flexibly than a

linear model.

