
CSC 120: Computer Science for the Sciences (R section)

Radford M. Neal, University of Toronto, 2015

http://www.cs.utoronto.ca/∼radford/csc120/

Week 4

Combining Data of Different Types in a List

We’ve seen how we can put several numbers into a vector of numbers. Or we can

put several strings into a vector of strings. But what if we want to combine both

types of data? Let’s try. . .

> c(123,"fred",456)

[1] "123" "fred" "456"

R converts the numbers to character strings, so that the elements of the vector

will all be the same type (character).

But we can put together data of different types in a list :

> list(123,"fred",456)

[[1]]

[1] 123

[[2]]

[1] "fred"

[[3]]

[1] 456

Lists Can Contain Anything

Elements of a list can actually be anything, including vectors of different lengths:

> list (1:4, 3:10)

[[1]]

[1] 1 2 3 4

[[2]]

[1] 3 4 5 6 7 8 9 10

You can even put lists within lists (though these are hard to read when printed):

> list(4,list(5,6))

[[1]]

[1] 4

[[2]]

[[2]][[1]]

[1] 5

[[2]][[2]]

[1] 6

Extracting and Replacing Elements of a List

You can get a single element of a list by subscripting with the [[. . .]] operator:

> L <- list (c(3,1,7), c("red","green"), 1:4)

> L[[2]]

[1] "red" "green"

> L[[3]]

[1] 1 2 3 4

You can replace elements the same way. Continuing from above. . .

> L[[3]] <- c("x","y","z")

> L

[[1]]

[1] 3 1 7

[[2]]

[1] "red" "green"

[[3]]

[1] "x" "y" "z"

Notice that the new value can have a type different from that of the old value.

Making Lists Bigger
You can make list longer by assigning to an element that doesn’t exist yet:

> L <- list(1,3)

> L

[[1]]

[1] 1

[[2]]

[1] 3

> L[[3]] <- "xx"

> L

[[1]]

[1] 1

[[2]]

[1] 3

[[3]]

[1] "xx"

You can create a list this way starting with an empty list made with list().

Giving Names to List Elements

You can give names to elements of a list, and then refer to these elements by

name with the $ operator. For example:

> L <- list (a=c(3,1,7), bc=c("red","green"), q=1:4)

> L$a

[1] 3 1 7

> L$bc

[1] "red" "green"

> L$q <- TRUE

> L

$a

[1] 3 1 7

$bc

[1] "red" "green"

$q

[1] TRUE

If an element has a name, R uses it for printing, rather than the numerical index.

Using a List to Return Multiple Values from a Function

This function takes as input a vector of character strings, and returns a list of two

vectors, with the first and the last characters of the input strings:

first_and_last_chars <- function (strings) {

first <- character(length(strings)) # Create two string vectors for

last <- character(length(strings)) # the results, initially all ""

for (i in 1:length(strings)) {

nc <- nchar(strings[i])

first[i] <- substring(strings[i],1,1) # Find first & last chars

last[i] <- substring(strings[i],nc,nc) # of the i’th string

}

list (first=first, last=last) # Return list of both result vectors

}

Here’s an example of its use:

> fl <- first_and_last_chars (c("abc","wxyz"))

> fl$first

[1] "a" "w"

> fl$last

[1] "c" "z"

Specifying Function Arguments by Name

Suppose you define a function with several arguments, such as

hohoho <- function (times, what) {

r <- what

while (times > 1) { r <- paste(what,r); times <- times-1 }

r

}

You can call the function by just giving values for the arguments, in the same

order as in the function definition. For example:

> hohoho (3, "ho")

[1] "ho ho ho"

But you can instead specify arguments using their names, in any order:.

> hohoho (times=3, what="ho")

[1] "ho ho ho"

> hohoho (what="ho", times=3)

[1] "ho ho ho"

This is very useful if there are many arguments, whose order is hard to remember.

Default Values for Function Arguments

When you define a function, you can specify a default value for an argument,

which is used if a value for the argument isn’t specified when the function is

called. For example, here is the hohoho function with defaults for both arguments:

hohoho <- function (times=3, what="ho") {

r <- what

while (times > 1) { r <- paste(what,r); times <- times-1 }

r

}

Here are some calls of this function:

> hohoho(4) # ’what’ will default to "ho"

[1] "ho ho ho ho"

> hohoho(what="hee") # ’times’ will default to 3

[1] "hee hee hee"

> hohoho() # uses defaults for both arguments

[1] "ho ho ho"

This is very useful for functions with many arguments that are often set to the

same (default) value, as is the case for many of R’s pre-defined functions.

Creating a Plot in Stages

Many simple plots can be created with a single plot command — eg, plot(x,y)

will plot points with coordinates given by the vectors x and y.

More complicated plots can be created in stages by adding more points, lines, and

text to what has already been plotted.

The general approach:

• Create a new plot with plot. It might contains some points or lines, or might

be completely empty. Features such as the axis scales and labels are

determined at this stage.

• Then add more information, using functions such as points, lines, abline,

and text. You can call these functions as many times as needed, perhaps

with different options for things like colour and line width each time.

Creating a New Plot

You create a new plot with the plot function. It takes one or two data vectors as

its first arguments, but has many, many other possible arguments. You’ll want to

let most of these have their default values, and refer to any that you set by name.

Here are some of the possible arguments to plot:

type Type of plotting — "p" for points (the default), "l" for lines,

"b" for both points and lines, "c" for lines only but with space for points

col Colour for points/lines plotted (default is "black")

xaxt Set to "n" to get rid of horizontal axis numbers

yaxt Set to "n" to get rid of vertical axis numbers

xlab Label for the horizontal axis

ylab Label for the vertical axis

xlim Horizontal range for plot (vector of length two)

ylim Vertical range for plot (vector of length two)

asp Aspect ratio, asp=1 ensures one vertical unit looks the same

length as one horizontal unit

For example, plot (c(), xlim=c(0,2), ylim=c(1,5)) will plot an empty

frame with horizonal axis labels from 0 to 2 and vertical axis labels from 1 to 5.

Adding Points to a Plot

We can add points to a plot with the points function. Like plot, it takes two

vectors as its first two arguments, containing the x and y coordinates of the

points. (Or just a single vector argument with the y coordinates, in which case

the x coordinates are 1, 2, 3, . . .)

It can also take other arguments that set various options, such as

type Set to "b" for lines as well as points

col Colour for points plotted

pch Character to plot points with — default is a circle, other possibilities

are pch="x" for plotting with x symbols, or pch=20 for solid dots

For example, points (x, y, col="red", pch=20) will add solid red dots to the

plot, at the coordinates given by the vectors x and y.

Adding Lines to a Plot

We can add lines to a plot with the lines function.

In addition to one or two arguments giving the coordinates of the points to

connect with lines, it can take other arguments such as those below (which can

also be used for plot):

type Set to "b" for points too, "c" for lines only but with space for points

col Colour for lines plotted

lty Line type — eg, "dotted", "dashed", or "solid" (the default)

lwd Line width (default is 1)

For example, lines (y, col="green", lty="dotted") will add dotted green

lines to the plot, at the x coordinates 1, 2, 3, . . . and y coordinates given by the

vector y.

Adding Text to a Plot

We can add text to a plot with the text function.

Here’s an example that adds ”WOW” to the origin of the plot:

> text (0, 0, "WOW")

We can put many character strings on a plot with one call of text, since its

arguments can be vectors of x coordinates, y coordinates, and character strings.

For example:

> x <- 1:10

> y <- x^2

> plot(x,y,xlim=c(0,11))

> text(x,y+2,paste("square of",x))

Example: Drawing a Spiral

Here’s an example R script that draws a spiral in a plain box, using 7 segments

each time it winds around, with red dots at the vertices. The start and end are

labelled with “start” and “end”.

n <- 20

angle <- 2*pi*(0:n)/7

dist <- 0:n

x <- dist * cos(angle)

y <- dist * sin(angle)

plot (x, y, type="c", xaxt="n", yaxt="n", xlab="", ylab="",

xlim=c(-n,n), ylim=c(-n,n), asp=1)

points (x, y, col="red")

text (x[1], y[1]-1, "start")

text (x[n+1], y[n+1]+1, "end")

The Spiral Plot

> source("http://www.cs.utoronto.ca/~radford/csc120/spiral-script.r")

start

end

