
Family Name: Given Name: Student Number:

UNIVERSITY OF TORONTO
Faculty of Arts and Science

APRIL EXAMINATIONS 2016

CSC 120H1S (L0201)

Duration - 3 hours

No Aids Allowed

1

2

3

4

5

6

7

8

9

10

11

T

Answer all questions in the space provided; if you run out of space, use the back of a page, and
indicate where the answer continues.

No books, notes, or calculators allowed.

The eleven questions are worth equal numbers of marks.

You must obtain at least 40% on this final exam to pass the course.

Page 1 of 11



1. In the ten blank spaces below, fill in what R will print if the commands shown are entered one
after the other into the R console. (Note that the > characters are the R command prompts,
not something that was typed in.)

> plum <- 100

> bob <- 12

> plum * bob

> plum * bob + 3

> plum + bob / 2

> (plum + bob) / 2

> a <- 2:6

> b <- c(10,20,30,50,70)

> x <- a + b

> y <- c(a,b)

> a[2]

> b[4]

> a <- 1:5

> a + x

> x[2]

> y[7]

> y*100

Page 2 of 11



2. Here is the definition of a function called mystery1:

mystery1 <- function (v) {

s <- 0

i <- 1

j <- length(v)

while (i < j) {

s <- s + v[i] * v[j]

i <- i + 1

j <- j - 1

}

s

}

For the two calls of this function below, write down the value that R will print:

> mystery1 (c(5,6,10,20))

> mystery1 (1:5)

3. Here is the definition of a function called mystery2:

mystery2 <- function (a, b) {

if (nchar(a) < nchar(b))

n <- nchar(a)

else

n <- nchar(b)

repeat {

if (substring(a,1,n) == substring(b,1,n))

return (n)

n <- n - 1

}

return (0)

}

For the three calls of this function below, write down the value that R will print:

> mystery2 ("pineapple", "pickle")

> mystery2 ("apple", "pear")

> mystery2 ("grapefruit", "grape")

Page 3 of 11



4. We would like to have an R function, called sum_by_neg, that takes two arguments, which
are both numeric vectors of the same length, which is at least one. (But the function doesn’t
have to check that the arguments are actually like this.) The value returned by sum_by_neg

should be the sum of the elements of its first argument for which the corresponding element in
the second argument is negative. The value returned should be zero if none of the elements
in the second argument are negative.

Here are two examples:

> sum_by_neg (c(2,7,10,3,1), c(-1,0,3,-2,4))

[1] 5

> sum_by_neg (c(5,4), c(3,7))

[1] 0

a) Write a definition for sum_by_neg that uses a “for” loop, and that when subscripting
uses only indexes that are single numbers (not vectors).

b) Write a definition for sum_by_neg that does not have a loop, using indexes that are
numeric or logical vectors.

Page 4 of 11



5. In the ten blank spaces below, fill in what R will print if the commands shown are entered one
after the other into the R console. (Note that the > characters are the R command prompts,
not something that was typed in.)

> fun <- function (x, y) (x+y)*2

> fun (3, 5)

> 10 * fun (2, 2)

> another_fun <- function (up, down) c (up+1, down-1)

> another_fun (7, 2+2)

> another_fun (fun(1,2), fun(3,4))

> yet_another_fun <- function (x) x-1

> fun (7, yet_another_fun(5))

> p <- 7

> x <- 3

> up <- 2

> down <- 9

> another_fun (7, yet_another_fun(5))

> one_last_fun <- function (a) { p <- a*x; p-1 }

> one_last_fun (6)

> one_last_fun (p)

> one_last_fun (x)

> one_last_fun (fun (p,x))

Page 5 of 11



6. Write down a definition for an R function called sum_edges that takes one argument that is a
numeric matrix with at least two rows and two columns, and returns the sum of the elements
of this matrix that are on the top, bottom, left, or right edge.

Here is an example call of this function:

> M <- matrix (c(4,1,9,6,10,2,7,3,8), nrow=3, ncol=3)

> M

[,1] [,2] [,3]

[1,] 4 6 7

[2,] 1 10 3

[3,] 9 2 8

> sum_edges (M)

[1] 40

The value returned above is 40 because 40 = 4 + 6 + 7 + 3 + 8 + 2 + 9 + 1. Your function
should work when its argument is any numeric matrix, with at least two rows and columns,
not just for the example shown above. The matrix will not necessarily have the same number
of rows as columns.

Page 6 of 11



7. Here is the definition of a function called mystery3:

mystery3 <- function (L) {

M <- matrix (0, nrow=length(L), ncol=2)

for (i in 1:length(L)) {

M[i,1] <- length(L[[i]])

M[i,2] <- mean(L[[i]])

}

M

}

a) For the two calls of this function below, write down the value that R will print:

> testlist <- list (1:3, c(8,0,0,7,0), c(9,1))

> mystery3 (testlist)

> x <- 0:10

> y <- 0:4

> mystery3 (list(x,y))

b) Below, write down a new definition for mystery3 that computes the same results as the
function defined above, but which is defined by a short R expression that uses sapply

and cbind, and which does not contain a loop.

Page 7 of 11



8. In the three blank spaces below (at the end), fill in what R will print if the commands shown
are entered one after the other into the R console. (Note that the > and + characters at the
beginnings of lines are the R command prompts, not something that was typed in.)

> bigger <- function (x) UseMethod("bigger")

>

> bigger.abc <- function (x) x+1

> bigger.pqr <- function (x) 2*x

> bigger.xyz <- function (x) x^2

>

> bigger_and_bigger <- function (z,n) {

+ r <- numeric(n)

+ for (i in 1:n) {

+ z <- bigger(z)

+ r[i] <- z

+ }

+ r

+ }

>

> u <- 2

> class(u) <- "abc"

> v <- 2

> class(v) <- "pqr"

> w <- 2

> class(w) <- "xyz"

>

> bigger_and_bigger (u,3)

> bigger_and_bigger (v,3)

> bigger_and_bigger (w,3)

Page 8 of 11



9. Write down a definition for a function called NA_for_bad_age_education that takes a data
frame of information on people as its only argument, and returns a data frame that is like its
argument except that inconsistent values in the data frame for the variables age (age in years)
and education (years of formal educuation) are replaced by NA, R’s missing data indicator.

In detail, you should replace the value of both age and education by NA if education is
greater than age minus 4 (since it is implausible that someone would start formal education
before age 4).

You may assume without checking that variables (columns) called age and education exist
in the data frame passed as the argument to NA_for_bad_age_education, and that there are
no existing NA values for these variables.

Here is an example of what this function should do:

> df

name age gender education

1 mary 23 F 16

2 joe 14 M 13

3 fred 92 M 19

4 bert 34 M 42

5 holly 12 F 7

6 gwen 17 F 0

>

> NA_for_bad_age_education(df)

name age gender education

1 mary 23 F 16

2 joe NA M NA

3 fred 92 M 19

4 bert NA M NA

5 holly 12 F 7

6 gwen 17 F 0

This is just an example, however — your function should work for any data frame of the sort
described, not just the one shown above.

Page 9 of 11



10. In the five blank spaces below, fill in what R will print if the commands shown are entered
one after the other into the R console. (Note that the > characters at the starts of lines are
the R command prompts, not something that was typed in.)

> set.seed(123)

>

> runif(4)

[1] 0.2875775 0.7883051 0.4089769 0.8830174

> runif(4)

[1] 0.9404673 0.0455565 0.5281055 0.8924190

>

> set.seed(123)

>

> a <- runif(4)

> b <- runif(4)

> any(a>b)

> all(a>b)

> all(4*a>b)

> set.seed(123)

>

> a-runif(4)

> a[a>runif(4)]

Page 10 of 11



11. Write down a definition of a function called is_and_is_not that takes as its only argument
a vector of character strings, and returns a vector of two numbers, the first of which is the
number of occurrences of the string "is" in its argument, and the second of which is the
number of these occurences of "is" that are followed immediately by "not".

Here is an example of what this function should do:

> is_and_is_not (c("if","he","is","at","home",

+ "he","is","not","at","work",

+ "and","he","is","not","at","school"))

[1] 3 2

This is just an example, however — your function should work when passed any vector of
strings (but you don’t have to check that the argment actually is a vector of strings).

Page 11 of 11


