
CSC 121: Computer Science for Statistics

Radford M. Neal, University of Toronto, 2017

http://www.cs.utoronto.ca/∼radford/csc121/

Week 8

Using Numeric Vectors as Subscripts

A subscript used with [] can be a vector of indexes, rather than just one index,

yielding a subset of elements having those indexes, not just one element:

> v <- c(9,10,3)

> names(v) <- c("abc","def","xyz")

> v

abc def xyz

9 10 3

> v[c(1,3)] # Notice that names of elements are carried along

abc xyz

9 3

You can also index with a vector of negative numbers. This gets you all elements

except those whose indexes are in the index vector (negated):

> v[-2]

abc xyz

9 3

> v[c(-1,-length(v))]

def

10

Difference Between [] and [[]]

We can now see better what the difference is between subscripting with [] and

with [[]] — [] extracts a subset of elements (which might be just one),

whereas [[]] extracts a single element.

> v

abc def xyz

9 10 3

> v[2]

def

10

> v[[2]] # Notice there’s no name here, just the element

[1] 10

> L <- list (a="xy", b=9, c=TRUE)

> L[2] # Notice that the result is still a list

$b

[1] 9

> L[[2]] # ... but this is an element of the list

[1] 9

Using Logical Vectors as Subscripts

A subscript can also be a logical vector, which selects elements in positions where

this subscript is TRUE:

> v

abc def xyz

9 10 3

> v[c(TRUE,FALSE,TRUE)]

abc xyz

9 3

> v[v>5]

abc def

9 10

R’s “and” (&) and “or” (|) operators can be useful for this:

> v[v>5 & v<10]

abc

9

> v[v>9 | v<7]

def xyz

10 3

Vectors as Matrix Subscripts

Vector subscripts can also be used to select rows or columns of a matrix:

> M <- matrix (1:12, nrow=3, ncol=4)

> rownames(M) <- c("ab","cd","ef")

> colnames(M) <- c("w","x","y","z")

> M

w x y z

ab 1 4 7 10

cd 2 5 8 11

ef 3 6 9 12

> M[c(3,1),c(2,4,4)] # Indexes needn’t be in order, can be duplicates

x z z

ef 6 12 12

ab 4 10 10

> M[c(TRUE,FALSE,TRUE),]

w x y z

ab 1 4 7 10

ef 3 6 9 12

Using Vector Indexes to Replace Elements in a Vector

Numeric and logical vectors can be used as indexes when we replace elements in a

vector rather than get them out.

For example:

> v <- c(66,33,99,10,12)

> v[c(2,4,1)] <- c(100,200,300)

> v

[1] 300 100 99 200 12

> v[c(TRUE,FALSE,FALSE,FALSE,TRUE)] <- c(800,900)

> v

[1] 800 100 99 200 900

Here’s how we can use this to make a modified version of the airquality data

frame (see last week’s slides) with missing values for Solar.R filled in:

mod_airquality <- airquality

mod_airquality$Solar.R [is.na(airquality$Solar.R)] <-

mean (airquality$Solar.R, na.rm=TRUE)

Re-Ordering a Vector, Matrix, or Data Frame

We can change the order of elements in a matrix, or of rows in a matrix or data

frame, using an index that is a permutation of the possible indexes.

One use is to change the order to be increasing in some variable. The order

function produces the permutation needed to do this. For example:

> heights_and_weights

name height weight

1 Fred 62 144

2 Mary 60 131

3 Joe 71 182

> by_weight <- order (heights_and_weights$weight)

> by_weight

[1] 2 1 3

> new <- heights_and_weights [by_weight,]

> new

name height weight

2 Mary 60 131

1 Fred 62 144

3 Joe 71 182

Selecting a Subset of Rows in a Data Frame

Another use of logical indexes is in selecting a subset of rows in a data frame for

which the variables have certain values.

For example, here we select only people with weight greater than 140:

> heights_and_weights

name height weight

1 Fred 62 144

2 Mary 60 131

3 Joe 71 182

> heights_and_weights [heights_and_weights$weight > 140,]

name height weight

1 Fred 62 144

3 Joe 71 182

And here we get only people with weight greater than 140 and height less than 70:

> heights_and_weights [heights_and_weights$weight > 140

+ & heights_and_weights$height < 70,]

name height weight

1 Fred 62 144

Some Design Flaws in R

R is a very useful language, but like all programming languages, it’s not perfect.

Indeed, some of R’s features are poorly designed, making it too easy to write code

that doesn’t always work.

I’ll talk about two of these here:

• You can’t get an empty vector when making a sequence with an expression

like i:j.

• R will sometimes convert matrices to plain vectors when you don’t want it to.

The Problem of Reversing Sequences

The : operator will produce either an increasing sequence or a decreasing

sequence, depending on whether the first operand is less or greater than the

second:

> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

> 10:1

[1] 10 9 8 7 6 5 4 3 2 1

This may seem convenient — and it is for Small Assignment 3 — but it’s a bad

idea. When you use : in a program, you need to be sure which sort of sequence

you’re going to get!

An Illustration of Why Reversing Sequences are Bad

Here’s a function that is supposed to return a modified square matrix in which all

the elements above the diagonal have been set to one:

ones_above_diagonal <- function (M) {

n <- nrow(M)

for (i in 1:n)

for (j in (i+1):n)

M[i,j] <- 1

M

}

Here’s what happens when we try to use it:

> ones_above_diagonal(matrix(0,nrow=4,ncol=4))

Error in M[i, j] <- 1 : subscript out of bounds

(The exact error message depends on the version of R used.)

Why the error? We need to get a zero-length sequence from (i+1):n when i

equals n. But instead we get a sequence of length two, containing n+1 and n.

How could we fix it?

The Problem of Dropped Dimensions

When you index a matrix with a single row or column index, R converts the

result to a vector, rather than keep it as a matrix.

Sometimes this is what you want:

> M <- matrix(1:6,nrow=2,ncol=3)

> M[1,2]

[1] 3

> M[1,2:ncol(M)]

[1] 3 5

But sometimes not:

> A <- M[,2:ncol(M)]

> A[1,1]

[1] 3

> B <- M[2:nrow(M),]

> B[1,1]

Error in B[1, 1] : incorrect number of dimensions

Stopping R From Dropping Dimensions

You can tell R to not drop dimensions from a matrix with the drop=FALSE option:

> M <- matrix(1:6,nrow=2,ncol=3)

> M[,2:ncol(M)]

[,1] [,2]

[1,] 3 5

[2,] 4 6

> M[2:nrow(M),]

[1] 2 4 6

> M[,2:ncol(M),drop=FALSE]

[,1] [,2]

[1,] 3 5

[2,] 4 6

> M[2:nrow(M),,drop=FALSE]

[,1] [,2] [,3]

[1,] 2 4 6

But adding drop=FALSE all the time makes everything longer and messier. So it’s

tempting not to. But then you may get unexpected bugs once in a while. . .

