Consider a Bayesian linear basis function model for the response associated with a single input, \(x \), in which the basis functions are \(\phi_0(x) = 1 \) and \(\phi_j(x) = \gamma \exp(- (x - \mu_j)^2 / (2s^2)) \), for \(j = 1, 2, 3, \ldots \).

Let the prior for \(\beta_0 \) be \(N(0, \omega_0^2) \), and let the prior for all the \(\beta_j \) for \(j = 1, \ldots, M - 1 \) be \(N(0, \omega_j^2) \). (All these \(\beta_j \) are independent in the prior.)

Suppose that for a particular \(M \), we independently draw \(\mu_j \) for \(j = 1, \ldots, M - 1 \) from the uniform distribution on the interval \((-\sqrt{M}/2, \sqrt{M}/2)\), and that we set all \(\omega_j^2 \) for \(j > 0 \) to \(1/\sqrt{M} \).

Find the limit of the covariance function that this setup defines as \(M \) goes to infinity. In other words, the limit, for any \(x \) and \(x' \), of

\[
K(x, x') = \sum_{j=0}^{M-1} \omega_j^2 \phi_j(x) \phi_j(x')
\]