
CSC 310: Information Theory

University of Toronto, Fall 2011

Instructor: Radford M. Neal

Week 11

More on Hamming Distance

Recall that the Hamming distance, d(u,v), of two codewords u and v is

the number of positions where u and v have different symbols.

This is a proper distance, which satisfies the triangle inequality :

d(u,w) ≤ d(u,v) + d(v,w)

Here’s a picture showing why:

u : 0 1 1 0 0 1 1 0 1 1 1 0

- - - - - -

v : 0 1 1 0 0 1 0 1 0 0 0 1

- - - - -

w : 0 1 1 1 1 0 0 1 0 0 1 0

Here, d(u,v) = 6, d(u,v = 5), and d(u,w) = 7.

Minimum Distance and Decoding

A code’s minimum distance is the minimum of d(u,v) over all distinct

codewords u and v.

If the minimum distance is at least 2t + 1, a nearest neighbor decoder will

always decode correctly when there are t or fewer errors.

Here’s why: Suppose the code has distance d ≥ 2t + 1. If u is sent and

v is received, having no more than t errors, then

• d(u,v) ≤ t.

• d(u,u′) ≥ d for any codeword u
′ 6= u.

From the triangle inequality:

d(u,u′) ≤ d(u,v) + d(v,u′)

It follows that

d(v,u′) ≥ d(u,u′) − d(u,v) ≥ d − t ≥ (2t + 1) − t ≥ t + 1

The decoder will therefore decode correctly to u, at distance t, rather

than to some other u
′, at distance at least t + 1.

A Picture of Distance and Decoding

Here’s a picture of codewords (black dots) for a code with minimum

distance 2t + 1, showing how some transmissions are decoded:

less than t errors
Correct decoding with

Correct decoding with
more than t errors

Incorrect decodings with
more than t errors

t

Minimum Distance for Linear Codes

To find the minimum distance for a code with 2K codewords, we will in

general have to look at all 2K(2K−1)/2 pairs of codewords.

But there’s a short-cut for linear codes...

Suppose two distinct codewords u and v are a distance d apart. Then the

codeword u − v will have d non-zero elements. The number of non-zero

elements in a codeword is called its weight.

Conversely, if a non-zero codeword u has weight d, then the minimum

distance for the code is at most d, since 0 is a codeword, and d(u,0) is

equal to the weight of u.

So the minimum distance of a linear code is equal to the minimum weight

of the 2K−1 non-zero codewords. (This is useful for small codes, but

when K is large, finding the minimum distance is difficult in general.)

Examples of Minimum Distance and
Error Correction for Linear Codes

Recall the linear [5, 2] code with the following codewords:

00000 00111 11001 11110

The three non-zero codewords have weights of 3, 3, and 4. This code

therefore has minimum distance 3, and can correct any single error.

The single-parity-check code with N = 4 has the following codewords:

0000 0011 0101 0110

1001 1010 1100 1111

The smallest weight of a non-zero codeword above is 2, so this is the

minimum distance of this code. This is too small to guarantee correction

of even one error. (Though the presence of a single error can be detected.)

Finding Minimum Distance From a
Parity-Check Matrix

We can find the minimum distance of a linear code from a parity-check

matrix for it, H. The minimum distance is equal to the smallest number

of linearly-dependent columns of H.

Why? A vector u is a codeword iff uHT = 0. If d columns of H are

linearly dependent, let u have 1s in those positions, and 0s elsewhere.

This u is a codeword of weight d. And if there were any codeword of

weight less than d, the 1s in that codeword would identify a set of less

than d linearly-dependent columns of H.

Special cases:

• If H has a column of all zeros, then d = 1.

• If H has two identical columns, then d ≤ 2.

• For binary codes, if all columns are distinct and non-zero, then d ≥ 3.

Example: The [7, 4] Hamming Code

We can define the [7, 4] Hamming code by the following parity-check

matrix:










0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1











Clearly, all the columns of H are non-zero, and they are all distinct. So

d ≥ 3. We can see that d = 3 by noting that the first three columns are

linearly dependent, since










0

0

1











+











0

1

0











+











0

1

1











=











0

0

0











This produces 1110000 as an example of a codeword of weight three.

Since it has minimum distance 3, this code can correct any single error.

Hamming Codes

We can see that a binary [N, K] code will correct any single error if all the

columns in its parity-check matrix are non-zero and distinct.

One way to achieve this: Make the N − K bits in successive columns be

the binary representations of the integers 1, 2, 3, etc.

This is one way to get a parity-check matrix for a [7, 4] Hamming code:










0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1











When N is a power of two minus one, the columns of H contain binary

representations of all non-zero integers up to 2N−K − 1.

These are called the Hamming codes.

Encoding Hamming Codes

By rearranging columns, we can put the parity-check matrix for a

Hamming code in systematic form. For the [7, 4] code, we get

H =









0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1









Recall that a systematic parity check matrix of the form [P T | IN−K] goes

with a systematic generator matrix of the form [IK |P]. We get

G =















1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1















We encode a message block, s, of four bits, by computing t = sG. The

first four bits of t are the same as s; the remaining three are “check bits”.

Note: The order of bits may vary depending on how we construct the code.

Decoding Hamming Codes

Consider the non-systematic [7, 4] Hamming code parity-check matrix:

H =









0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1









Suppose t is sent, but r = t + n is received. The receiver can compute the

syndrome, z = rHT . Using the fact that tHT = 0 for a codeword t,

z = rHT = (t + n)HT = tHT + nHT = nHT

If there were no errors, n = 0, so z = 0.

If there is one error, in position i, then nHT will be the ith column of H

— which contains the binary representation of the number i!

So, to decode, compute the syndrome, z, and if it is non-zero, flip the bit

it identifies. If we rearranged H to systematic form, we modify this

procedure in corresponding fashion.

Syndrome Decoding in General

For any linear code with parity-check matrix H, we can find the

nearest-neighbor decoding of a received block, r, using the syndrome,

z = rHT .

We write the received data as r = t + n, where t is the transmitted

codeword, and n is the error pattern, so that z = nHT .

A nearest-neighbor decoding can be found by finding an error pattern, n,

that produces the observed syndrome, and which has the smallest possible

weight. Then we decode r as r − n.

Building a Syndrome Decoding Table

We can build a table indexed by the syndrome that gives the error pattern

of minimum weight for each syndrome.

We initialize all entries in the table to be empty.

We then consider the non-zero error patterns, n, in some order of

non-decreasing weight. For each n, we compute the syndrome, z = nHT ,

and store n in the entry indexed by z, provided this entry is currently

empty. We stop when the table has no empty entries.

Problem: The size of the table is exponential in the number of check

bits — it has 2N−K − 1 entries for an [N, K] code.

Example: The [5, 2] Code

Recall the [5, 2] code with this parity-check matrix:








1 1 0 0 0

0 0 1 1 0

1 0 1 0 1









Here is a syndrome decoding table for this code:

z n

001 00001

010 00010

011 00100

100 01000

101 10000

110 10100

111 01100

The last two entries are not unique.

Hamming’s Sphere-Packing Bound

We’d like to make the minimum distance as large as possible, or

alternatively, have as many codewords as possible for a given distance.

There’s a limit, however.

Consider a binary code with d = 3, which can correct any single error.

The “spheres” of radius one around each codeword must be disjoint — so

that any single error leaves us closest to the correct decoding.

For codewords of length N , each such sphere contains 1+N points. If we

have m codewords, the total number of points in all spheres will be

m (1+N), which can’t be greater than the total number of points, 2N .

So for binary codes that can correct any single error, the number of

codewords is limited by

m ≤ 2N/(1 + N)

A More General Version of the Bound

A binary code of length N that is guaranteed to correct any pattern of up

to t errors can’t have more than this number of codewords:

2N



1 +





N

1



 +





N

2



 + · · · +





N

t









−1

The kth term in the brackets is the number of possible patterns of k errors

in N bits: 



N

k



 =
N !

k! (N−k)!

If the above bound is actually reached, the code is said to be perfect. For

a perfect code, the disjoint spheres of radius t around codewords cover all

points.

Very few perfect codes are known. Usually, we can’t find a code with as

many codewords as would be allowed by this bound.

Hamming Codes are Perfect

For each positive integer c, there is a binary Hamming code of length

N = 2c − 1 and dimension K = N − c. These codes all have minimum

distance 3, and hence can correct any single error.

They are also perfect, since

2N/(1 + N) = 22
c
−1/(1 + 2c − 1) = 22

c
−1−c = 2K

which is the number of codewords.

One consequence: A Hamming code can correct any single error, but if

there is more than one error, it will not be able to give any indication of a

problem — instead, it will “correct” the wrong bit, making things worse.

The extended Hamming codes add one more check bit (ie, they add one

more row of all 1s to the parity-check matrix). This allows them to detect

when two errors have occurred.

The Gilbert-Varshamov Bound

The sphere-packing bound is an upper limit on how many codewords we

can have. There’s also a lower limit, showing there is a code with at least

a certain number of codewords.

There is a binary code of length N with minimum distance d that has at

least the following number of codewords:

2N



1 +





N

1



 +





N

2



 + · · · +





N

d − 1









−1

Why? Imagine spheres of radius d−1 around codewords in a code with

fewer codewords than this. The number of points in each sphere is the

sum above in brackets, so the total number of points in these spheres is

less than 2N . So there’s a point outside these spheres where we could add

a codeword that is at least d away from any other codeword.

Product Codes

A product code is formed from two other codes C1, of length N1, and C2,

of length N2. The product code has length N1N2.

We can visualize the N1N2 symbols of the product code as a 2D array

with N1 columns and N2 rows.

Definition of a product code: An array is a codeword of the product code

if and only if

• all its rows are codewords of C1

• all its columns are codewords of C2

We will assume here that C1 and C2 are linear codes, in which case the

product code is also linear. (Why?)

Dimensionality of Product Codes

Suppose C1 is an [N1, K1] code and C2 is an [N2, K2] code. Then their

product will be an [N1N2, K1K2] code.

Suppose C1 and C2 are in systematic form. Here’s a picture a codeword of

the product code:
1

2 2

1

2

1

N - K

K

N - K K

from the check bits
Check bits computed

from the columns
Check bits computed

from the rows
Check bits computed

being encoded
Bits of the message

The dimensionality of the product code is not more than K1K2, since the

message bits in the upper-left determine the check bits. We’ll see that the

dimensionality equals K1K2 by showing how to find correct check bits for

any message.

Encoding Product Codes

Here’s a procedure for encoding messages with a product code:

1. Put K1K2 message bits into the upper-left K2 by K1 corner of the

N2 by N1 array.

2. Compute the check bits for each of the first K2 rows, according to C1.

3. Compute the check bits for each of the N1 columns, according to C2.

After this, all the columns will be codewords of C2, since they were given

the right check bits in step (3). The first K2 rows will be codewords of C1,

since they were given the right check bits in step (2). But are the last

N2 − K2 rows codewords of C1?

Yes! Check bits are linear combinations of message bits. So the last

N2 − K2 rows are linear combinations of earlier rows. Since these rows are

in C1, their combinations are too.

Minimum Distance of Product Codes

If C1 has minimum distance d1 and C2 has minimum distance d2, then the

minimum distance of their product is d1d2.

Proof:

Let u1 be a codeword of C1 of weight d1 and u2 be a codeword of C2 of

weight d2. Build a codeword of the product code by putting u1 in row i of

the array if u2 has a 1 in position i. Put zeros elsewhere. This codeword

has weight d1d2.

Furthermore, any non-zero codeword must have at least this weight. It

must have at least d2 rows that aren’t all zero, and each such row must

have at least d1 ones in it.

Decoding Product Codes

Products of even small codes (eg, [7, 4] Hamming codes) have lots of check

bits, so decoding by building a syndrome table may be infeasible.

But if C1 and C2 can easily be decoded, we can decode the product code

by first decoding the rows (replacing them with the decoding), then

decoding the columns.

This will usually not be a nearest-neighbor decoder (and hence will be

sub-optimal, assuming a BSC and equally-likely messages).

One advantage of product codes: They can correct some burst errors —

errors that come together, rather than independently.

How Good Are Simple Codes?

Shannon’s noisy coding theorem says we can get the probability of error in

decoding a block, pB, arbitrarily close to zero when transmitting at any

rate, R, below the capacity, C — if we use good codes of large enough

length, N .

For repetition codes, as N increases, pB → 0, but R → 0 as well.

For Hamming codes, as N = 2c − 1 increases, R → 1, but pB → 1 as well,

since there’s bound to be more than one error in a really big block.

How Good are Products of Codes?

Let C be an [N, K] code of minimum distance d (guaranteed to correct

t = ⌊(d−1)/2⌋ errors).

What is the code we get by taking the product of C with itself p times like?

Length: Np = Np

Rate: Rp = Kp/Np = (K/N)p → 0

Distance: dp = dp

Relative distance: ρp = dp/Np = (d/N)p → 0

The code can correct up to about dp/2 errors, corresponding to the

fraction of erroroneous bits being ρp/2.

For a BSC with error probability f , we expect that for large N , the

fraction of erroneous bits in a block will be very close to f (ie, the number

of erronenous bits will be close to Nf), from the “Law of Large Numbers”.

So for large N , the codes have a low rate, and it’s likely there are more

errors than we can guarantee to correct (though possibly we might correct

some error patterns beyond this guarantee).

Good Codes Aren’t Easy to Find

In the 56 years since Shannon’s noisy coding theorem, many schemes for

creating codes have been found, but most of them don’t allow one to reach

the performance promised by theorem.

They can still be useful. For example, error correction in computer

memory necessarily works on fairly small blocks (eg, 64 bits).

Performance on bigger blocks is irrelevant.

But in other applications — computer networks, communication with

spacecraft, digital television — we could use quite big blocks if it would

help with error correction.

How can we do this in practice?

