
CSC 310: Information Theory

University of Toronto, Fall 2011

Instructor: Radford M. Neal

Week 13



Good Codes and Minimum Distance

Recall that for a code to be guaranteed to correct up to t errors, its

minimum distance must be at least 2t + 1.

What’s the minimum distance for the random codes used to prove the

noisy coding theorem?

A random N -bit code is very likely to have minimum distance d ≤ N/2

— if we pick two codewords randomly, about half their bits will differ.

So these codes are likely not guaranteed to correct patterns of N/4 or

more errors.

A BSC with error probability f will produce about Nf errors. So for

f > 1/4, we expect to get more errors than the code is guaranteed to

correct. Yet we know these codes are good!

Conclusion: A code may be able to correct almost all patterns of t

errors even if it can’t correct all such patterns.



What a Good Linear Code Looks Like

Minimum distance isn’t the whole story, but nevertheless, it’s not good for

a linear code to have very low-weight code words (and hence very small

minimum distance).

A consequence: The generator matrix for a good code should not be

sparse — each row should have many 1s, so that encoding a message with

only one 1 produces a codeword that has many 1s.

The decoder’s perspective: To be confident of decoding correctly, getting

even one bit wrong should produce a large change in the codeword, which

will be noticeable (unless we’re very unlucky).



Low Density Parity Check Codes

We should avoid sparse generator matrices. But can we use a sparse

parity-check matrix?

Doing so isn’t quite optimal, but such “Low Density Parity Check”

(LDPC) codes can be very good.

The big advantage of LDPC codes: There is a computationally

feasible way of decoding them that is good, though not optimal.

We can construct LDPC codes randomly, in various ways.

One way: Randomly generate columns of H with exactly three 1s in them.

For best results, equalize the number of 1s in each row (as much as

possible) by randomly picking the position of the three 1s in the next

column from among rows that don’t already have 3N/(N−K) 1s.



Example: A [50, 25] LDPC Code

Here’s the parity-check matrix for a small LDPC code (three 1s in each

column, six in each row).

0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0



A Generator Matrix for the Example

A systematic generator matrix obtained from the parity-check matrix

(with columns re-ordered):

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 1 1 0 1 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0



Decoding LDPC Codes

To encode a message with an LDPC, we just multiply it by the generator

matrix. But how do we decode?

The optimal method (assuming a BSC, and equally-probable messages) is

to pick the codeword nearest to what was received. But this is

computationally infeasible when K and N − K are large.

The reason LDPC codes are interesting is that the sparseness of their

parity-check matrices allows for an approximate (good, but not optimal)

decoding method that works by propagating probabilities through a graph.



Graphical Representation of a Code

We can represent a code by a graph:

• Empty circles represent bits of a codeword.

• Black circles represent received data bits.

• Black squares represent parity checks.

Here’s a fragment of such a graph:

Notice that each codeword bit connects to three parity checks —

corresponding to the three 1s in each column of H. Each parity check

connects to six codeword bits.

Our task: Fill in the empty circles.



Decoding by Propagating Probabilities

We can’t be absolutely sure of the codeword bits, but we can keep track of

the odds in favour of 1 over 0 (the ratio of the probability of 1 over the

probability of 0).

Each black node will send each codeword bit it connects to a message

giving its idea of what the odds for 1 over 0 should be for that bit.

All the messages a codeword receives are multiplied to give the current

idea of what the odds are for that bit — used to guess the codeword once

these odds have stabilized.

But first, we iterate: Each codeword bit sends each parity check it

connects to a message with its current odds, which the parity check node

uses to update its messages to other codeword bits. Messages propagate

until the odds have stabilized.



Details of the Messages

Received data bit to codeword bit: For a BSC, odds sent are

(1−f)/f if the received data is 1, f/(1−f) if the received data is 0.

Parity check to codeword bit: Message is the probability of the parity

check being satisfied if that bit is 1, divided by the probability if that bit

is 0. These probabilities are calculated based on that parity check’s idea

of the odds for the other bits in the parity check being 1 versus 0.

Codeword bit to a parity check: Message is the odds of the bit being

1 versus 0, based on the received data, and on the messages from the

other parity checks the codeword bit is involved in.



Avoiding Double-Counting Information

Messages sent between codeword bits and parity checks exclude

information obtained from the node the message is being sent to. This

avoids undesirable “double-counting” of information when a message

comes back from that node.

But: This works perfectly only if the graph is a tree. If there are cycles

in the graph, information can return to its source indirectly.

This is why probability propagation is only an approximate decoding

method. It works well up to a point, but doesn’t have as low an error rate

as nearest-neighbor (maximum likelihood) decoding would achieve.



Demonstration of LDPC Codes

I tried rate 1/2 LDPC codes with three bits in each column of H, with

varying codeword lengths, tested using a BSC with varying error

probability, f , and hence capacity, C = 1−H2(f).

Here are the block error rates for three such codes, estimated from 1000

simulated messages:

f C [100, 50] [1000, 500] [10000, 5000]

0.02 0.86 0.000 0.000 0.000

0.03 0.81 0.012 0.000 0.000

0.04 0.76 0.059 0.000 0.000

0.05 0.71 0.108 0.000 0.000

0.06 0.67 0.213 0.005 0.000

0.07 0.63 0.327 0.104 0.000

0.08 0.60 0.482 0.404 0.125

Tests were done with software available from my web page, at

http://www.cs.utoronto.ca/~radford/



History of LDPC and Related Codes

• Gallager, LDPC codes — 1961.

True merits not realized? Computers too slow? Largely ignored and

forgotten.

• Berrou, et al, TURBO codes — 1993.

Surprisingly good codes, practically decodable, but not really

understood.

• MacKay and Neal — 1995.

Reinvent LDPC codes, slightly improved. Show they’re almost as

good as TURBO codes. Decoding algorithm related to other

probabilistic inference methods.

• Many (Richardson, Frey, etc.) — ongoing.

Further improvements in LDPC codes, relationship to TURBO codes,

theory of why it all works.



Lossy Compression

Many kinds of data — such as images and audio signals — contain

“noise” and other information that is not really of interest. Preserving

such useless information seems wasteful.

A common approach: Lossy compression, for which decompressing a

compressed file gives you something close to the original, but not

necessarily exactly the original.

We should be able to compress to a smaller file size if we don’t have to

reproduce the original exactly.



What do We Mean by “Close”?

Any lossy compression scheme is based (at least implicitly) on some idea

of what counts as “close to the original”.

This is a question that can only be answered by considering the users of

the compression program, and what they want.

For images and audio signals, two fundamental issues are:

• What differences can humans perceive?

It is thought, for example, that humans perceive only frequencies in

audio but not the associated phases of sine waves.

• What differences do humans find annoying or distracting?

For example, slight changes in colour might be regarded as less

important than making a straight line be jagged.



Formalizing Distortion

Let the input to the compression program be the sequence a1, a2, . . . , aN .

The decompression program outputs the sequence b1, b2, . . . , bN . The ai

and the bi might come from the same or different alphabets.

We can measure how close the decompressed output is to the original by

its average “distortion”:

d̄ =
1

N

N
∑

i=1

d(ai, bi)

d(a, b) is a non-negative distortion function measuring how bad it is for a

decompressed symbol to be b if the original was a.

Note: In practice, the overall distortion might not be a sum of

distortions for individual symbols, but I’ll ignore that complication.



Simple Distortion Functions

Distortion functions that measure what we’re really interested in are likely

to be complicated. But we can consider some simple examples that are

easier to handle.

Hamming distance: For a bilevel image (such as a fax), we might use a

distortion function for which d(0, 0) = d(1, 1) = 0 and d(0, 1) = d(1, 0) = 1.

Squared error: For a gray-scale image with pixel intensity values in

{0, . . . , 255}, we might use d(a, b) = (a − b)2.



Rate for a Given Distortion

If the entropy of our source is H, we expect to be able to losslessly

compress N symbols into NH bits — ie, at rate H.

But what if decompression is allowed to produce any output that has

average distortion less than some limit, D?

The rate distortion function, R(D), tells us how well we can do — it is the

smallest rate (average bits per input symbol) for any compression scheme

that has average distortion no greater than D.

Note that R(D) depends on both the source probabilities and on the

distortion function chosen.



Example: Binary Data

Suppose our source alphabet is binary, with equal probabilities for 0 and 1

(independently from symbol to symbol).

Suppose we will decompress to the same alphabet, and that we measure

distortion by Hamming distance.

If we insist on lossless compression, we can’t compress at all, since the

entropy is one.

How well can we compress if we allow an average distortion of up to 1/8

— ie, if we allow up to one in eight bits to be wrong?



Lossy Compression Using Hamming Codes

Here’s a scheme that compresses a binary source to 4/7 of the original file

size while altering only 1/8 of the bits, on average:

1. Grab the next 7 input bits from the source.

2. Pretend these bits are received data from a [7, 4] Hamming code in

systematic form.

3. “Decode” these 7 bits by the usual Hamming code procedure.

4. Output the 4 systematic bits from this “decoded” codeword.

To decompress, we take blocks of 4 bits and “encode” them in 7 bits the

usual way.

Result: Perfect reconstruction of the 7 bits 1/8 of the time; one wrong

bit 7/8 of the time.



The Rate Distortion Theorem

Consider all channels, C, with input alphabet {ai} and output alphabet

{bj}. Given the input probabilities that our source has, we can find for

each such channel

• Its mutual information, I(A,B).

• The average distortion between the channel input and the resulting

output.

Shannon proved that the rate distortion function, R(D), is equal to the

minimum value for I(A,B) over all channels whose average distortion is

no more than D.

For a binary source where 0 has probability p0 ≤ 1/2, and where

distortion is measured by Hamming distance, it turns out that

R(D) =







H2(p0) − H2(D) for 0 ≤ D ≤ p0

0 for D > p0



How Can We Achieve This?

As for his noisy coding theorem, Shannon’s rate distortion theorem can be

proved using codes chosen at random.

Consider a channel C that minimizes I(A,B) subject to the distortion

between input and output being less than D. We find the output

probabilities for such a channel, and then pick codewords at random with

symbol probabilities equal to these output probabilities.

Encoding procedure: Find the codeword closest (as measured by

distortion) to the actual message; then send an index of that codeword.

If we chose 2K codewords, sending this index will take K bits, for a rate

of K/N .

Decoding procedure: Output the codeword corresponding to the

received index.



Lossy Data Compression in Practice

Shannon’s elegant theory currently plays little role in practical lossy data

compression (or the similar task of “vector quantization”).

Instead, various ad hoc methods are used.

Two reasons for this:

1. Formalizing a suitable distortion function taking account of human

perceptual abilities and tolerances is difficult.

2. The step from the impractical random codes used to prove the rate

distortion theorem to a practical method of optimal compression

hasn’t been achieved.

Overcoming these issues is a current challenge for research.


