
CSC 310: Information Theory

University of Toronto, Fall 2011

Instructor: Radford M. Neal

Week 3

Tradeoffs Choosing Codeword Lengths

The Kraft-McMillan inequalities imply that to make some codewords

shorter, we will have to make others longer.

Example: The obvious binary encoding for eight symbols uses codewords

that are all three bits long. This code is instantaneous, and satisfies the

Kraft inequality, since:

1

23
+

1

23
+

1

23
+

1

23
+

1

23
+

1

23
+

1

23
+

1

23
= 1

Suppose we want to encode the first symbol using only two bits. We’ll

have to make some other codewords longer – eg, we can encode two of the

other symbols in four bits, and the remaining five symbols in three bits,

since

1

22
+

1

24
+

1

24
+

1

23
+

1

23
+

1

23
+

1

23
+

1

23
= 1

How should we choose among the possible codes?

Formalizing Which Codes are the Best:
Probabilities for Source Symbols

We’d like to choose a code that uses short codewords for common symbols

and long ones for rare symbols.

To formalize this, we need to assign each symbol in the source alphabet a

probability. Let’s label the symbols as a1, . . . , aI , and write the

probabilities as p1, . . . , pI . We’ll assume that these probabilities don’t

change with time.

We also assume that symbols in the source sequence, X1, X2, . . . , XN ,

are independent :

P (X1 = ai1 , X2 = ai2 , . . . , Xn = aiN) = pi1 pi2 · · · piN

These assumptions are really too restrictive in practice, but we’ll ignore

that for now.

Expected Codeword Length

Consider a code whose codewords for symbols a1, . . . , aI have lengths

l1, . . . , lI . Let the probabilities of these symbols be p1, . . . , pI . We define

the expected codeword length for this code to be

LC =
I∑

i=1
pi li

This is the average codeword length when encoding a single source symbol.

But since averaging is a linear operation, the average length of a coded

message with N source symbols is just NLC . For example, when N =3:

I∑
i1=1

I∑
i2=1

I∑
i3=1

pi1 pi2 pi3 (li1 +li2 +li3) =
I∑

i1=1
pi1 li1 +

I∑
i2=1

pi2 li2 +
I∑

i3=1
pi3 li3

= 3LC

We aim to choose a code for which LC is small.

Optimal Codes

We will say that a code is optimal for a given source (with given symbol

probabilities) if its average length is at least as small as that of any other

uniquely-decodable code.

An optimal code always exists; in fact there will be several optimal codes

for any source, all with the same average length.

The Kraft-McMillan inequalities imply that one of these optimal codes is

instantaneous. More generally, for any uniquely decodable code with

average length L, there is an instantaneous code that also has average

length L.

Questions: Can we figure out the length of an optimal code from the

symbol probabilities? Can we find such an optimal code, and use it in

practice?

Shannon Information Content

A plausible proposal:

The “amount of information” obtained when we learn that X =ai is

log2(1/pi) bits, where pi = P (X =ai). We’ll call this the Shannon

information content.

Example:

We learn which of 64 equally-likely possibilities has occurred. The

Shannon information content is log2(64) = 6 bits. This makes sense, since

we could encode the result using codewords that are all 6 bits long, and

we have no reason to favour one symbol over another by using a code of

varying length.

The real test of whether this is a good measure of information content will

be whether it actually helps in developing a good theory.

The Entropy of a Source

The Shannon information content pertains to a single value of the random

variable X. We’ll measure how much information the value of X conveys

on average by the expected value of the Shannon information content.

This is called the entropy of the random variable (or source), and is

symbolized by H:

H(X) =

I∑

i=1

pi log2(1/pi)

where pi = P (X =ai).

When the logarithm is to base 2, as above, the entropy has units of bits.

We could use a different base if we wish — when base e is used, the units

are called “nats” — but we won’t in this course.

Information, Entropy, and Codes

How does this relate to data compression?

A vague idea: Since receipt of symbol ai conveys log2(1/pi) bits of

“information”, this symbol “ought” to be encoded using a codeword with

that many bits. Problem: log2(1/pi) isn’t always an integer.

A consequence: If this is done, then the expected codeword length will

be equal to the entropy:
∑
i

pi log2(1/pi).

A vague conjecture: The expected codeword length for an optimal

code ought to be equal to the entropy.

But this can’t quite be right as stated, because log2(1/pi) may not be an

integer. Consider p0 = 0.1, p1 = 0.9, so H = 0.469. But the optimal code

for a symbol with only two values obviously uses codewords 0 and 1, with

expected length of 1.

A Property of the Entropy

For any two probability distributions, p1, . . . , pI and q1, . . . , qI :

I∑

i=1

pi log2

(
1

pi

)
≤

I∑

i=1

pi log2

(
1

qi

)

Proof:

First, note that for all x > 0, lnx ≤ x−1. So log2 x ≤ (x−1)/ ln 2.

Now look at the LHS − RHS above:

I∑

i=1

pi

[
log2

(
1

pi

)
− log2

(
1

qi

)]
=

I∑

i=1

pi log2

(
qi

pi

)

≤
1

ln 2

I∑

i=1

pi

(
qi

pi
− 1

)
=

1

ln 2

(
I∑

i=1

qi −
I∑

i=1

pi

)
= 0

Proving We Can’t Compress to
Less Than the Entropy

We can use this result to prove that any uniquely decodable binary code

for X must have expected length of at least H(X):

Proof: Let the codeword lengths be l1, . . . , lI , and let K =
I∑

i=1
2−li

and qi = 2−li/K.

The qi can be seen as probabilities, so

H(X) =

I∑

i=1

pi log2

(
1

pi

)
≤

I∑

i=1

pi log2

(
1

qi

)

=
I∑

i=1

pi log2(2
liK) =

I∑

i=1

pi(li + log2 K)

Since the code is uniquely decodable, K ≤ 1 and hence log2 K ≤ 0.

From this, we can conclude that LC =
∑

pili ≥ H(X).

Shannon-Fano Codes

Though we can’t always choose codewords with the “right” lengths,

li = log2(1/pi), we can try to get close. Shannon-Fano codes are

constructed so that the codewords for the symbols, with probabilities

p1, . . . , pI , have lengths

li = ⌈log2(1/pi)⌉

Here, ⌈x⌉ is the smallest integer greater than or equal to x.

The Kraft inequality says such a code exists, since

I∑

i=1

1

2li
≤

I∑

i=1

1

2log2(1/pi)
=

I∑

i=1

pi = 1

Example: pi: 0.4 0.3 0.2 0.1

log
2
(1/pi): 1.32 1.74 2.32 3.32

li = ⌈log
2
(1/pi)⌉: 2 2 3 4

Codeword: 00 01 100 1100

Expected Lengths of Shannon-Fano Codes

The expected length of a Shannon-Fano code for a souce with symbol

probabilities p1, . . . , pI , is

I∑

i=1

pili =

I∑

i=1

pi ⌈log2(1/pi)⌉

<
I∑

i=1

pi (1 + log2(1/pi))

=
I∑

i=1

pi +
I∑

i=1

pi log2(1/pi))

= 1 + H(X)

This gives an upper bound on the expected length of an optimal code.

However, the Shannon-Fano code itself may not be optimal (though it

sometimes is).

What Have We Shown?

We’ve now proved the following:

For a source X, any optimal instantaneous code, C, will have

expected length, LC , satisfying

H(X) ≤ LC < H(X) + 1

Two main theoretical problems remain:

• Can we find such an optimal code in practice?

• Can we somehow close the gap between H(X) and H(X) + 1 above,

to show that the entropy is the exactly correct way of measuring the

average information content of a source?

Ways to Improve an Instantaneous Code

Suppose we have an instantaneous code for symbols a1, . . . , aI , with

probabilities p1, . . . , pI . Let li be the length of the codeword for ai.

Under each of the following conditions, we can find a better instantaneous

code, with smaller expected codeword length:

• If p1 < p2 and l1 < l2:

Swap the codewords for a1 and a2.

• If there is a codeword of the form xby, where x and y are strings of

zero or more bits, and b is a single bit, but there are no codewords of

the form xb′z, where z is a string of zero or more bits, and b′ 6= b:

Change all the codewords of the form xby to xy. (Improves things if

none of the pi are zero, and never makes things worse.)

The Improvements in Terms of Trees

We can view these improvements in terms of the trees for the codes.

Here’s an example:

11

010

011

100

101

110

111

NULL

a , p = 0.111 1

a , p = 0.20

a , p = 0.14

a , p = 0.12

a , p = 0.13

a , p = 0.30

2 2

3

4

5

6

3

4

5

6

10

0

1

01

Two codewords have the form 01 . . . but none have the form 00 . . .

(ie, there’s only one branch out of the 0 node). So we can improve the

code by deleting the surplus node.

Continuing to Improve the Example

The result is the code shown below:

10

11

100

101

110

111

NULL

00

01 a , p = 0.20

a , p = 0.14

a , p = 0.12

a , p = 0.13

a , p = 0.30

2 2

3

4

5

3

4

5

66

1

a , p = 0.111 1
0

Now we note that a6, with probability 0.30, has a longer codeword than

a1, which has probability 0.11. We can improve the code by swapping the

codewords for these symbols.

The Code After These Improvements

Here’s the code after this improvement:

101

110

111

NULL

00

01 a , p = 0.20

a , p = 0.14

a , p = 0.12

a , p = 0.13

2 2

3

4

5

3

4

5

6a , p = 0.306

a , p = 0.111 1

100

0

1

10

11

In general, after such improvements:

• One of the least probable symbols will have a codeword of the longest

length.

• There will be at least one other codeword of this length — otherwise

the longest codeword would be a solitary branch.

• One of the second-most improbable symbols will also have a codeword

of the longest length.

A Final Rearrangement

The codewords for the most improbable and second-most improbable

symbols must have the same length. Also, the most improbable symbol’s

codeword must have a “sibling” of the same length.

We can therefore swap codewords to make this sibling be the codeword for

the second-most improbable symbol. For the example, the result is

101

110

111

NULL

00

01 a , p = 0.20

a , p = 0.14

2 2

3 3

6a , p = 0.306

a , p = 0.111 1

a , p = 0.13

a , p = 0.12

55

44

100

0

1

10

11

Huffman Codes

We can use these insights about improving code trees to try to construct

optimal codes.

We will prove later that the resulting Huffman codes are in fact optimal.

We’ll concentrate on Huffman codes for a binary code alphabet.

Non-binary Huffman codes are similar, but slightly messier.

Huffman Procedure for Binary Codes

Here’s a recursive procedure to construct a binary Huffman code:

procedure Huffman:

inputs: symbols a1, . . . , aI , probabilities p1, . . . , pI

output: a code mapping a1, . . . , aI to codewords

if I = 2:

Return the code a1 7→ 0, a2 7→ 1.

else

Let j1, . . . , jI be some permutation of 1, . . . , I for which pj1 ≥ · · · ≥ pjI
.

Create a new symbol a′, with associated probability p′ = pjI−1
+ pjI

.

Recursively call Huffman to find a code for aj1 , . . . , ajI−2
, a′ with

probabilities pj1 , . . . , pjI−2
, p′. Denote the codewords for aj1 , . . . , ajI−2

, a′

in this code by w1, . . . , wI−2, w
′.

Return the code aj1 7→ w1, . . . , ajI−2
7→ wI−2, ajI−1

7→ w′0, ajI
7→ w′1.

Proving that Binary Huffman Codes are Optimal

We can prove that the binary Huffman code procedure produces optimal

codes by induction on the number of symbols, I.

For I = 2, the code produced is obviously optimal — you can’t do better

than using one bit to code each symbol.

For I > 2, we assume that the procedure produces optimal codes for any

alphabet of size I − 1 (with any symbol probabilities), and then prove

that it does so for alphabets of size I as well.

The Induction Step

Suppose the Huffman procedure produces optimal codes for alphabets of

size I − 1.

Let L be the expected codeword length of the code produced by the

Huffman procedure when it is used to encode the symbols a1, . . . , aI ,

having probabilities p1, . . . , pI . Without loss of generality, let’s assume

that pi ≥ pI−1 ≥ pI for all i ∈ {1, . . . , I − 2}.

The recursive call in the procedure will have produced a code for symbols

a1, . . . , aI−2, a′, having probabilities p1, . . . , pI−2, p′, with p′ = pI−1 + pI .

By the induction hypothesis, this code is optimal. Let its average length

be L′.

The Induction Step (Continued)

Suppose some other instantaneous code for a1, . . . , aI had expected

length less than L. We can modify this code so that the codewords for

aI−1 and aI are “siblings” (ie, they have the forms x0 and x1) while

keeping its average length the same, or less.

Let the average length of this modified code be L̂, which must also be less

than L.

From this modified code, we can make another code for a1, . . . , aI−2, a′.

We keep the codewords for a1, . . . , aI−2 the same, and encode a′ as x. Let

the average length of this code be L̂′.

The Induction Step (Conclusion)

We now have two codes for a1, . . . , aI and two for a1, . . . , aI−2, a′. The

average lengths of these codes satisfy the following equations:

L = L′ + pI−1 + pI

L̂ = L̂′ + pI−1 + pI

Why? The codes for a1, . . . , aI are like the codes for a1, . . . , aI−2, a′,

except that one symbol is replaced by two, whose codewords are one bit

longer. This one additional bit is added with probability p′ = pI−1 + pI .

Since L′ is the optimal average length, L′ ≤ L̂′. From these equations, we

then see that L ≤ L̂, which contradicts the supposition that L̂ < L.

The Huffman procedure therefore produces optimal codes for alphabets of

size I. By induction, this is true for all I.

What Have We Accomplished?

We seem to have solved the main practical problem: We now know how

to construct an optimal code for any source.

But: This code is optimal only if the assumptions we made in formalizing

the problem match the real situation.

Often they don’t:

• Symbol probabilities may vary over time.

• Symbols may not be independent.

• There is usually no reason to require that X1, X2, X3, . . . be encoded

one symbol at a time, as c(X1)c(X2)c(X3) · · ·.

We would require the last if we really needed instantaneous decoding, but

usually we don’t.

Example: Black-and-White Images

Recall the example from the first lecture, of black-and-white images.

There are only two symbols — “white” and “black”. The Huffman code is

white 7→ 0, black 7→ 1.

This is just the obvious code. But we saw that various schemes such as

run length coding can do better than this.

Partly, this is because the pixels are not independent. Even if they were

independent, however, we would expect to be able to compress the image

if black pixels are much less common than white pixels.

Entropy of a Binary Source

For a binary source, with symbol probabilities p and 1 − p, the entropy as

a function of p looks like this:

H(p)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

p

For example, H(0.1) = 0.469, so we might hope to compress a binary

source with symbol probabilities of 0.1 and 0.9 by more than a factor of

two. We obviously can’t do that if we encode symbols one at a time.

Solution: Coding Blocks of Symbols

We can do better by using Huffman codes to encode blocks of symbols.

Suppose our source probabilities are 0.7 for white and 0.3 for black.

Assuming pixels are independent, the probabilities for blocks of two

pixels will be

white white 0.7 × 0.7 = 0.49

white black 0.7 × 0.3 = 0.21

black white 0.3 × 0.7 = 0.21

black black 0.3 × 0.3 = 0.09

Here’s a Huffman code for these blocks:

WW 7→ 0, WB 7→ 10, BW 7→ 110, BB 7→ 111

The average length for this code is 1.81, which is less than the two bits

needed to encode a block of two pixels in the obvious way.

