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Extensions of a Source

We formalize the notion of encoding symbols in blocks by defining the

N -th extension of a source, in which we look at sequences of symbols,

written as (X1, . . . , XN ) or XN .

If our original source alphabet, AX , has I symbols, the source alphabet

for its N -th extension, AN
X , will have IN symbols — all possible blocks of

N symbols from AX .

If the probabilities for symbols in AX are p1, . . . , pI , the probabilities for

symbols in AN
X are found by multiplying the pi for all the symbols in the

block. (This is appropriate when symbols are independent.)

For instance, if N = 3:

P ((X1, X2, X3) = (ai, aj , ak)) = pi pj pk



Entropy of an Extension

We now prove that H(XN ) = NH(X):
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Or just use the fact that E(U + V ) = E(U) + E(V ).



Shannon’s Noiseless Coding Theorem

Using extensions we can compress arbitrarily close to the entropy !

Formally: For any desired average length per symbol, R, that is greater

than the binary entropy, H(X), there is a value of N for which a uniquely

decodable binary code for XN exists whose expected codeword length is

less than NR.



Proof of Shannon’s Noiseless Coding Theorem

Consider coding the N -th extension of a source whose symbols have

probabilities p1, . . . , pI , using a binary Shannon-Fano code.

The Shannon-Fano code for blocks of N symbols will have expected

codeword length, LN , less than 1 + H(XN ) = 1 + NH(X).

The expected codeword length per original source symbol will therefore be

less than
LN

N
=

1 + NH(X)

N
= H(X) +

1

N

By choosing N to be large enough, we can make this as close to the

entropy, H(X), as we wish.



An End and a Beginning

Shannon’s Noiseless Coding Theorem is mathematically satisfying. From

a practical point of view, though, we still have two problems:

• How can we compress data to nearly the entropy in practice?

The number of possible blocks of size N is IN — huge when N is

large. And N sometimes must be large to get close to the entropy by

encoding blocks of size N . Running the Huffman procedure for this

size alphabet (or just storing the resulting code) may be infeasible.

One solution: A technique known as arithmetic coding.

• Where do the symbol probabilities p1, . . . , pI come from? And are

symbols really independent, with known, constant probabilities?

This is the problem of source modeling.



Another Look at Code Trees

Any instantaneous code can be represented by a tree such as the

following, with subtrees for codewords circled:

0

1

00

01

10

11

000

001

010

011

100

101

110

111

NULL

Rather than concentrate on the codewords that head each subtree, let’s

concentrate on the rightmost column. . .



Viewing a Code as a Way of Dividing up a “Codespace”

Here’s the right column from the code tree, divided up according to

codeword:

010

011

100

101

110

111

Symbol a  , Codeword 100

Symbol a  , Codeword 101

Symbol a  , Codeword 11

Symbol a  , Codeword 01

2

3

4

001

000

If we view {000, 001, 010, 011, 100, 101, 110, 111} as an available

“codespace”, we see that this code divides it up so that symbol a1 gets

1/2 of it, symbols a2 and a3 get 1/8, and symbol a4 gets 1/4.



Can We Use Other Divisions?

We know that this code is optimal if the fraction of codespace assigned to

a symbol is equal to the symbol’s probability.

But suppose the symbol probabilities were 3/8, 1/8, 1/8, 3/8. We would

then like to divide up codespace as follows:

010

011

100

101

110

111

Symbol a  , probability 1/8

Symbol a  , probability 1/8

Symbol a  , probability 3/8

Symbol a  , probability 3/8

1

2

3

4

001

000

Unfortunately, these divisions don’t correspond to subtrees — so there’s

no code like this.



Viewing the Codespace as the Interval From 0 to 1

Let’s ignore this problem of how to generate codewords for the moment.

Instead, let’s ask how we could handle symbols that have probabilities like

1/3, which aren’t multiples of 1/8.

A solution: Consider the codespace to be the interval of real numbers

between 0 and 1.

For example:
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A Key Idea: Encode Blocks by Subdividing Further

Suppose we want to encode blocks of two symbols from this source.

We can do this by just subdividing the interval corresponding to the first

symbol in the block, in the same way we subdivided the original interval.

Here’s, how we encode the block a4 a1:
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Symbol a  , probability 1/3

Symbol a  , probability 1/6
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    = (2/3, 7/9)
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Encoding Large Blocks as Intervals

Here’s a general scheme for encoding a block of N symbols, ai1 , . . . , aiN :

1) Initialize the interval to
[

u(0), v(0)
)

, where u(0) = 0 and v(0) = 1.

2) For k = 1, . . . , N :

Let u(k) = u(k−1) +
(

v(k−1) − u(k−1)
)

ik−1
∑

j=1
pj

Let v(k) = u(k) +
(

v(k−1) − u(k−1)
)

pik

3) Output a codeword that corresponds (somehow) to the final interval,
[

u(N), v(N)
)

.

This scheme is known as arithmetic coding, since codewords are found

using arithmetic operations on the probabilities.



Finding a Codeword for an Interval

The last step requires that we be able to find a codeword for the final

interval. We’ll insist on an instantaneous code, for which no codeword is a

prefix of another codeword.

Any binary codeword defines a number in [0, 1), found by putting a

“binary point” at its left end. Eg, the codeword 101 defines the number

1 × (1/2) + 0 × (1/4) + 1 × (1/8).

We’ll choose a codeword such that:

• The codeword defines a point in the final interval.

• If we added any string of bits to the end of the codeword, it would

still define a point in the final interval.

Codewords chosen in this way will form a prefix code for the blocks.



How Long Will the Codewords Be?

Here’s a picture of how we pick a codeword for an interval:
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Here, the interval [w/2k, (w + 1)/2k) fits entirely within [u, v), the final

interval found when encoding the block. We can therefore use the k-bit

binary representation of w as the codeword for this block.

This can only be true if v−u ≥ 1/2k. Also, we will always be able to find

such a codeword of length k if v−u ≥ 2/2k = 1/2k−1 (as above).

Conclusion: We can pick a codeword of length k for a block of

probability p (= v−u) if k ≥ log(1/p) + 1. So codewords need be no

longer than ⌈log(1/p)⌉ + 1.



Getting Close to the Entropy Using Arithmetic Coding

We encode symbols from AX in blocks of size N (ie, we use the N -th

extension, AN
X), with N being quite large.

Assuming independence, the probability of the block ai1 , . . . , aiN is

pb = pi1 · · · piN .

We can find the interval for this block by subdividing (0, 1) N times

— without explicitly considering all possible blocks.

We can then find a binary codeword for this block that is no longer than

⌈log(1/pb)⌉ + 1 < log(1/pb) + 2

The average codeword length for blocks will be less than

2 +
∑

b

pb log(1/pb) = 2 + H(AN
X) = 2 + NH(AX)

The average number of bits transmitted per symbol of AX will be less

than H(AX) + 2/N .



How Well it Works (So Far)

Big advantage:

We can get arbitrarily close to the entropy using big blocks, without an

exponential growth in complexity with block size.

Big disadvantage:

If we use big blocks, many block probabilities will be tiny. For the

procedure to work, we will have to use highly precise arithmetic.

(The number of bits of precision needed for a good approximation will go

up linearly with blocksize, and the time for arithmetic involving such

operands will also grow linearly.)

Fortunately, this disadvantage can be overcome.


