
CSC 310: Information Theory

University of Toronto, Fall 2011

Instructor: Radford M. Neal

Week 5



Encoding the Whole Message, Transmitting as We Go

To get close to the entropy, we need big blocks. Why not go all the way?

— Just transmit the entire message as one block.

The problem of needing high-precision arithmetic is now even worse. We’ll

try to solve it by transmitting bits as soon as they are determined.

Example: After coding some symbols, our interval is

[0.625, 0.875) = [0.1012, 0.1112)

Any number in this interval that we might eventually transmit will start

with a 1 bit. We can transmit this bit immediately.



Expanding the Interval After Transmitting a Bit

Once we transmit a bit that is determined by the current interval, we can

throw it away, and then expand the interval by doubling.

Example: Continuing from the previous slide, the interval

[0.625, 0.875) = [0.1012, 0.1112)

results in transmission of a 1. We then throw out the 1, giving the interval

[0.0012, 0.0112)

and double the bounds, giving

[0.0102, 0.1102)

Expanding the interval will allow us to use representations of the bounds,

u and v, that are of lower precision.



Arithmetic Coding Without Blocks (Preliminary Version)

1) Initialize the interval [u, v) to u = 0 and v = 1.

2) For each source symbol, ai, in turn:

Compute r = v − u.

Let u = u + r
i−1
∑

j=1

pj and let v = u + rpi.

While u ≥ 1/2 or v ≤ 1/2:

If u ≥ 1/2:

Transmit a 1 bit.

Let u = 2(u−1/2) and v = 2(v−1/2).

If v ≤ 1/2:

Transmit a 0 bit.

Let u = 2u and v = 2v.

3) Transmit enough final bits to specify a number in [u, v).



A Picture Of How it Works

Suppose we are encoding symbols from the alphabet {a1, a2, a3, a4}, with

probabilities 1/3, 1/6, 1/6, 1/3.

Here’s how the interval changes as we encode the message a4, a2, . . .

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

a

a a

a

a

0
Transmit

1
Transmit

1
Transmit

Received Received

1

a

4

2

3

3

1

4

2

1

24 a

a

a

a

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

1/2

0

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

��������

��������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����



A Problem

We hope that by transmitting bits early and expanding the interval, we

can avoid tiny intervals, requiring high precision to represent.

Problem: What if the interval gets smaller and smaller, but it

always includes 1/2?

For example, as we encode symbols, we might get intervals of

[0.000002, 1.000002)

[0.010102, 0.110012)

[0.011012, 0.101002)

[0.011112, 0.100102)

· · ·

Although the interval is getting smaller and smaller, we still can’t tell

whether the next bit to transmit is a 0 or a 1.



A Solution

When a narrow interval straddles 1/2, it will have the form

[0.01xxx, 0.10xxx)

So although we don’t know what the next bit to transmit is, we do know

that the bit transmitted after the next will be the opposite.

So we can expand the interval around the middle of the range, and

remember that the next bit output should be followed by an opposite bit.

If we need to do several such expansions, there will be several opposite

bits to output.



Arithmetic Coding Without Blocks (Revised Version)

1) Initialize the interval [u, v) to u = 0 and v = 1.

Initialize the “opposite bit count” to c = 0.

2) For each source symbol, ai, in turn:

Compute r = v − u.

Let u = u + r
i−1
∑

j=1

pj and let v = u + rpi.

While u ≥ 1/2 or v ≤ 1/2 or u ≥ 1/4 and v ≤ 3/4:

If u ≥ 1/2:

Transmit a 1 bit followed by c 0 bits, then set c to 0.

Let u = 2(u−1/2) and v = 2(v−1/2).

If v ≤ 1/2:

Transmit a 0 bit followed by c 1 bits, then set c to 0.

Let u = 2u and v = 2v.

If u ≥ 1/4 and v ≤ 3/4:

Set c to c + 1.

Let u = 2(u−1/4) and v = 2(v−1/4).

3) Transmit enough final bits to specify a number in [u, v).



What Have We Gained?

By expanding the interval in this way, we ensure that the size of the

(expanded) interval, v − u, will always be at least 1/4.

We can now represent u and v with a fixed amount of precision — we

don’t need more precision for longer messages.

We will use a fixed point (scaled integer) representation for u and v.

Why not floating point?

• Fixed point arithmetic is faster on most machines.

• Fixed point arithmetic is well defined. Floating point arithmetic may

vary slightly from machine to machine. The effect? Machine B might

not correctly decode a file encoded on Machine A!



Symbol Probabilities for Arithmetic Coding

Symbol probabilities are often derived from counts of how often symbols

occurred previously. We’ll design an arithmetic coder assuming this.

Suppose we have counted that symbols a1, . . . , ai have occurred f1, . . . , fI

times (with all fi > 0). Then we’ll use estimated probabilities of

pi = fi /
I
∑

j=1

fj

For arithmetic coding, it’s convenient to pre-compute the cumulative

frequencies,

Fi =
i

∑

j=1

fj

We define F0 = 0, and use T for the total count, FI . We will assume that

T < 2h, so counts fit in h bits.



Precision of the Coding Interval

The ends of the coding interval will be represented by m-bit integers.

The integer bounds u and v represent the interval

[

u × 2−m, (v+1) × 2−m
)

(The addition of 1 to v allows the upper bound to be 1 without the need

to use m+1 bits to represent v.)

The received message will be represented as an m-bit integer, t, plus

further bits not yet read.

With these representations, the arithmetic performed will never produce a

result bigger than m + h bits.



Encoding Using Integer Arithmetic
u← 0, v ← 2m − 1

c← 0

For each source symbol, ai, in turn:

r ← v − u + 1

v ← u + ⌊(r ∗ Fi) / T⌋ − 1

u← u + ⌊(r ∗ Fi−1) / T⌋

While u ≥ 2m/2 or v < 2m/2 or u ≥ 2m/4 and v < 2m∗3/4:

If u ≥ 2m/2:

Transmit a 1 bit followed by c 0 bits

c← 0

u← 2 ∗ (u− 2m/2), v ← 2 ∗ (v − 2m/2) + 1

If v < 2m/2:

Transmit a 0 bit followed by c 1 bits

c← 0

u← 2 ∗ u, v ← 2 ∗ v + 1

If u ≥ 2m/4 and v < 2m ∗ 3/4:

c← c + 1

u← 2 ∗ (u− 2m/4), v ← 2 ∗ (v − 2m/4) + 1

Transmit two final bits to specify a point in the interval

If u < 2m/4:

Transmit a 0 bit followed by c 1 bits

Transmit a 1 bit

Else

Transmit a 1 bit followed by c 0 bits

Transmit a 0 bit



Precision Required

For this procedure to work properly, the loop that expands the interval

must terminate. This requires that the interval never shrink to nothing

— ie, we must always have v ≥ u.

This will be guaranteed as long as

⌊(r ∗ Fi) / T ⌋ > ⌊(r ∗ Fi−1) / T ⌋

This will be so as long as fi ≥ 1 (and hence Fi ≥ Fi−1 + 1) and r ≥ T .

The expansion of the interval guarantees that r ≥ 2m/4 + 1.

So the procedure will work as long as T ≤ 2m/4 + 1. If our symbol counts

are bigger than this, we have to scale them down (or use more precise

arithmetic, with a bigger m).

However, to obtain near-optimal coding, T should be a fair amount less

than 2m/4 + 1.



Decoding Using Integer Arithmetic
u← 0, v ← 2m − 1

t← first m bits of the received message

Until last symbol decoded:

r ← v − u + 1

w ← ⌊((t− u + 1) ∗ T − 1) / r⌋

Find i such that Fi−1 ≤ w < Fi

Output ai as the next decoded symbol

v ← u + ⌊(r ∗ Fi) / T⌋ − 1

u← u + ⌊(r ∗ Fi−1) / T⌋

While u ≥ 2m/2 or v < 2m/2 or u ≥ 2m/4 and v < 2m∗3/4:

If u ≥ 2m/2:

u← 2 ∗ (u− 2m/2), v ← 2 ∗ (v − 2m/2) + 1

t← 2 ∗ (t− 2m/2) + next message bit

If v < 2m/2:

u← 2 ∗ u, v ← 2 ∗ v + 1

t← 2 ∗ t + next message bit

If u ≥ 2m/4 and v < 2m ∗ 3/4:

u← 2 ∗ (u− 2m/4), v ← 2 ∗ (v − 2m/4) + 1

t← 2 ∗ (t− 2m/4) + next message bit



Proving That the Decoder Finds the Right Symbol

To show this, we need to show that if

Fi−1 ≤ ⌊((t − u + 1) ∗ T − 1) / r⌋ < Fi

then
u + ⌊(r ∗ Fi−1) / T ⌋ ≤ t ≤ u + ⌊(r ∗ Fi) / T ⌋ − 1

This can be proved as follows:

Fi−1 ≤ ⌊((t − u + 1) ∗ T − 1) / r⌋ ≤ ((t − u + 1) ∗ T − 1) / r

⇒ r ∗ Fi−1 / T ≤ t − u + 1 − 1/T

⇒ u + ⌊(r ∗ Fi−1) / T ⌋ ≤ u + (t − u) = t

Fi > ⌊((t − u + 1) ∗ T − 1) / r⌋

⇒ Fi ≥ ⌊((t − u + 1) ∗ T − 1) / r⌋ + 1

⇒ Fi ≥ ((t − u + 1) ∗ T − 1) / r − (r − 1)/r + 1

⇒ r ∗ Fi / T ≥ t − u + 1 − 1/T − (r − 1)/T + r/T

⇒ r ∗ Fi / T ≥ t − u + 1

⇒ u + ⌊(r ∗ Fi) / T ⌋ − 1 ≥ t



Summary

• Arithmetic coding provides a practical way of encoding a source in a

very nearly optimal way.

• Faster arithmetic coding methods that avoid multiplies and divides

have been devised.

• However: It’s not necessarily the best solution to every problem.

Sometimes Huffman coding is faster and almost as good. Other codes

may also be useful.

• Arithmetic coding is particularly useful for adaptive codes, in which

probabilities constantly change. We just update the table of

cumulative frequencies as we go.



History of Arithmetic Coding

• Elias — around 1960.

Seen as a mathematical curiosity.

• Pasco, Rissanen – 1976.

The beginnings of practicality.

• Rissanen, Langdon, Rubin, Jones – 1979.

Fully practical methods.

• Langdon, Witten/Neal/Cleary — 1980’s.

Improvement and popularization.

• Many more... (eg, Moffat/Neal/Witten, 1998)

Further refinements to the method.


