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Entropies of Conditional Distributions

Suppose the channel output is the symbol bj . The conditional distribution

for the symbol that was transmitted, given that bj was received is:

P (X = ai |Y = bj) =
pi Qj|i

qj

= Si|j

The receiver’s uncertainty about what was transmitted can be measured

by the entropy of this conditional distribution:

H(X |Y = bj) =
∑

i

Si|j log(1/Si|j)

In general, this entropy will be different for different received symbols.

Note that this entropy depends on both the channel’s transition

probabilities, Qj|i, and on the input probabilities, pi.



Example: BSC

Consider a BSC with probability 0.9 of correct transmission, and with

input probabilities of p0 = 0.2 and p1 = 0.8.

Suppose a “0” is received. The conditional distribution for the symbol

transmitted is given by the backward probabilities:

S0|0 =
0.2 × 0.9

0.2 × 0.9 + 0.8 × 0.1
= 0.69

S1|0 =
0.8 × 0.1

0.2 × 0.9 + 0.8 × 0.1
= 0.31

The entropy of this distribution is

H(X |Y = 0) = 0.69 log2(1/0.69) + 0.31 log2(1/0.31) = 0.89

Compare with the input distribution’s entropy:

0.2 log2(1/0.2) + 0.8 log2(1/0.8) = 0.72

Is this typical?



Conditional Entropy

The conditional entropy for X given Y is the average entropy of the

conditional distribution of X given Y = b, averaging over values for b:

H(X |Y ) =
∑

j

qj H(X |Y = bj)

where qj =
∑
i

pi Qj|i is the probability of bj .

This is the uncertainty that the receiver has on average about the input

symbol, given knowledge of the output symbol. We’ll see that it can’t be

greater than H(X).

Similarly, we can define

H(Y |X) =
∑

i

pi H(Y |X = ai) =
∑

i

pi

∑

j

Qj|i log(1/Qj|i)

This is the average uncertainty that the sender has about what the

receiver received.



Example: BSC

Continuing the example of a BSC with f = 0.1, p0 = 0.2, and p1 = 0.8,

let’s find the conditional distribution for the input given that “1” was

received:

S0|1 =
0.2 × 0.1

0.2 × 0.1 + 0.8 × 0.9
= 0.027

S1|1 =
0.8 × 0.9

0.2 × 0.1 + 0.8 × 0.9
= 0.973

From which we find that H(X |Y = 1) is

0.027 log2(1/0.027) + 0.973 log2(1/0.973) = 0.18

Noting that q0 = 0.2 × 0.9 + 0.8 × 0.1 = 0.26, and hence q1 = 0.74, we can

compute the conditional entropy of X given Y as:

H(X |Y ) = 0.26 × 0.89 + 0.74 × 0.18 = 0.36

which is less than H(X) = 0.72.



Joint and Conditional Entropies

H(X |Y ) is how much more information we would (on average) get from

learning X, given that we already know Y .

If we add H(Y ) to this, we ought to get the total amount of information

from knowing both X and Y — the joint entropy H(X, Y ). We do:

H(X, Y ) =
∑

i,j

Rij log(1/Rij)

=
∑

i,j

qjSi|j log(1/(qjSi|j))

=
∑

i,j

qjSi|j [log(1/qj) + log(1/Si|j)]

=
∑

i,j

qjSi|j log(1/qj) +
∑

i,j

qjSi|j log(1/Si|j)

=
∑

j

qj log(1/qj)
∑

i

Si|j +
∑

j

qj

∑

i

Si|j log(1/Si|j)

= H(Y ) + H(X |Y )



Mutual Information Again

The difference H(X) − H(X |Y ) is how much the receiver’s uncertainty

about the channel input decreases as a result of seeing the channel output

(on average). Intuitively, this is a measure of how much information the

channel is transmitting.

We had previously measured this by the mutual information:

I(X; Y ) = H(X) + H(Y ) − H(X, Y )

Are these two measures the same? Yes, from the previous slide, and a

similar derivation involving H(Y |X), we have

H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X |Y )

which lets us conclude that

I(X; Y ) = H(X) + H(Y ) − H(X, Y )

= H(X) − H(X |Y )

= H(Y ) − H(Y |X)



Example: BSC

For a BSC with f = 0.1, p0 = 0.2, p1 = 0.8, we found that

H(X |Y ) = 0.36, H(X) = 0.72

from which we get

I(X; Y ) = H(X) − H(X |Y ) = 0.36

We should get the same answer another way. Using q0 = 0.26 and

q1 = 0.74, as well as the symmetry of the transition probabilities:

H(Y ) = 0.26 log2(1/0.26) + 0.74 log2(1/0.74)

= 0.83

H(Y |X) = f log2(1/f) + (1−f) log2(1/(1−f))

= 0.1 log2(1/0.1) + 0.9 log2(1/0.9)

= 0.47

I(X; Y ) = H(Y ) − H(Y |X) = 0.36



Why Mutual Information is Non-Negative

I(X; Y ) = H(X) + H(Y ) − H(X, Y )

=
∑

i

pi log(1/pi) +
∑

j

qj log(1/qj) −
∑

i,j

Rij log(1/Rij)

=
∑

i,j

Rij log(1/pi) +
∑

i,j

Rij log(1/qj) −
∑

i,j

Rij log(1/Rij)

=
∑

i,j

Rij log(1/(piqj)) −
∑

i,j

Rij log(1/Rij)

If the input and output of the channel are independent, Rij = piqj , and

I(X; Y ) is zero. Otherwise, I(X; Y ) must be greater than zero (see the

Week 3 lecture notes).



Channel Capacity (Again)

Recall that we defined the capacity of a channel to be the maximum value

of I(X; Y ) that can be obtained with any choice of input distribution.

(The channel transition probabilities are considered fixed.)

We will eventually see that the capacity is the rate at which data can be

sent through the channel with vanishingly small probability of error.



Example: BSC

Consider a BSC with probability f of incorrect transmission. From the

channel’s symmetry,

H(Y |X) = f log(1/f) + (1−f) log(1/(1−f))

which doesn’t depend on the input distribution.

H(Y ) does depend on the input distribution. If p0 is the probability of a

“0” input, the output probabilities are q0 = p0(1−f) + (1−p0)f and

q1 = (1−p0)(1−f) + p0f , and

H(Y ) = q0 log(1/q0) + q1 log(1/q1)

This is maximized, at the value 1 bit, when q0 = q1 = 1/2, which happens

when p0 = 1/2.

From this we find that the capacity in bits is

C = max
p0

I(X; Y ) = max
p0

H(Y ) − H(Y |X)

= 1 − [f log2(1/f) + (1−f) log2(1/(1−f))] = 1 − H2(f)



Example: The Z Channel

Consider the asymmetric Z channel, which always transmits “0” correctly,

but turns “1” into “0” with probability f . Suppose we use an input

distribution in which “0” occurs with probability p0.

q0 = p0 + (1−p0)f

q1 = (1 − p0)(1−f)

H(Y ) = q0 log(1/q0) + q1 log(1/q1) = H2((1−p0)(1−f))

H(Y |X = 0) = 0

H(Y |X = 1) = f log(1/f) + (1−f) log(1/(1−f)) = H2(f)

H(Y |X) = (1−p0)H2(f)

I(X; Y ) = H(Y ) − H(Y |X)

= H2((1−p0)(1−f)) − (1−p0)H2(f)



The Z Channel Example Continued

Here are plots of I(X; Y ) as a function

of p0, when f = 0, 0.2, 0.4, 0.6, 0.8:
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The values at the maxima give

the capacities of the channel for

each value of f :

f p0 at max Capacity

0.0 0.500 1.000

0.2 0.564 0.618

0.4 0.591 0.407

0.6 0.608 0.246

0.8 0.621 0.114


