Notes for CSC 310, Radford M. Neal, 2004

Statement of Shannon’s Noisy Coding
Theorem for the BSC

Consider a BSC with error probability f < 1/2.
This channel has capacity C = 1 — Hy(f).

For any desired closeness to capacity, n > 0O,
and for any desired limit on error probability,

e > 0, there is a code of some length N whose
rate, R, is at least C — n, and for which the
probability that nearest neighbor decoding will
decode a codeword incorrectly is less than e.

I'll now give a proof of this, which
more-or-less follows the proof for general
channels in Chapter 10 of MacKay's book.

Strategy for Proving the Theorem

Rather than showing how to construct a
specific code for given values of f, i, and e,
we will consider choosing a code of a suitable
length, N, and rate logy(M)/N, by picking M
codewords at random from ZJ.

We consider the following scenario:

1. We randomly pick a code, C, which we
give to both the sender and the receiver.

2. The sender randomly picks a codeword
X € C, and transmits it through the channel.

3. The channel randomly generates an error
pattern, n, and delivers y = x+ n to the
receiver.

4. The receiver decodes y to a codeword, x*,
that is nearest to y in Hamming distance.

If the probability that this process leads to
x* #£ x is less than ¢, then there must be some
specific code with error probability less than e.

Rearranging the Order of Choices

It will be convenient to rearrange the order in
which random choices are made, as follows:

1. We randomly pick one codeword, X, which
is the one the sender transmits.

2. The channel randomly generates an error
pattern, n, that is added to x to give the
received data, y. Let the number of
transmission errors (ie, ones in n) be w.

3. We now randomly pick the other M —1
codewords. If the Hamming distance from
y of all these codewords is greater than w,
nearest-neighbor decoding will make the
correct choice.

The probability of the decoder making the
wrong choice here is the same as before.

The Typical Number of Errors

If N is large, we expect that close to Nf of
the N bits in a codeword will be received in
error. In other words, we expect the error
vector, n, to contain close to Nf ones.

Specifically, the Law of Large Numbers tells us
that for any 8 > O, there is some value for N
such that if w is the number of errors in n,

P(f=B<w/N<f+pB) 2 1-¢/2

We'll say that error vectors, n, for which
f—B<w/N< f+ B are “typical”.
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How Many Typical
Error Vectors Are There?

How many error vectors, n, for which
f—B<w/N < f+p are there?

If n is such a typical error pattern with w
errors, then

P(n) = f(1—f)N-v 5 NGB (1 p)NA-F-F)

Let J be the number of typical error vectors.
Since the total probability of all these vectors
must not exceed one, we must have

JfN(f-l-ﬂ)(l_f)N(l—f—ﬁ) <1
and hence
J < f~NGHB (1 py=NQ=f=p)

Equivalently,
J < oN(=(f+8) log2(f)—(1—f—p) logz(1-£))
< oN(H2(f)+B1092((1-1)/ 1))

Decoding with Typical Error Patterns

The probability that the codeword nearest to
y is the correct decoding will be at least as
great as the probability that the following
sub-optimal decoder decodes correctly:

If there is exactly one codeword x* for
which n =y — x* has a typical number
of ones, then decode to x*, otherwise
declare that decoding has failed.

This sub-optimal decoder can fail in two ways:

e The correct decoding, X, may correspond
to an error pattern, n =y — X, that is not
typical.

e Some other codeword, x/, may exist for
which the error pattern n’ =y — X' is
typical.

Bounding the Probability of Failure (I)

The total probability of decoding failure is less
than the sum of the probabilities of failing in
these two ways. We will try to limit each of
these to ¢/2.

We can choose N to be big enough that
P(f-B<w/N<f4+pB) > 1—¢/2
This ensures that the actual error pattern will

be non-typical with probability less than e/2.

We now need to limit the probability that
some other codeword also corresponds to a
typical error pattern.

Bounding the Probability of Failure (II)

The number of typical error patterns is
J < oN(Ha(H)+Blogx((1-1)/1))

For a random codeword, X, other than the one
actually transmitted, the corresponding error
pattern given y will contain 0s and 1s that are
independent and equally likely.

The probability that one such codeword will
produce a typical error pattern is therefore

72N < o= N(1-Ha(f)-Blog2((1-£)/£))

The probability that any of the other M — 1
codewords will correspond to a typical error
pattern is bounded by M times this. We need
this to be less than ¢/2, ie

M 2~ N(A—Ha(f)—Blog2((1-1)/f)) €/2
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Finishing the Proof

Finally, we need to pick 8, M, and N so that
the two types of error have probabilities less
than €¢/2, and the rate, R is at least C — 7.

we will let M = 2[(C—N1 and make sure N
is large enough that R =[(C — n)N]/N < C.

With this value of M, we need
o[(C—n)NT o—N(1—-Ha(f)—B1092((1-£)/ 1))
— o—NQ-Hx(f)-[(C—n)NT/N-Blog2((1-£)/f))

to be less than €/2.

The channel capacity is C = 1 — Ho(f), so that
1—Hy(f) —[(C—=n)N]/N = C — R is positive.

For a sufficiently small value of 3,

1— Ha(f) — [(C = n)N1/N — Bloga((1 — £)/ )
will also be positive. With this g and a large
enough N, the probabilities of both types of
error will be less than ¢/2, so the total error
probability will be less than e.
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