
CSC 363, Winter 2010 — Solutions to Long Assignment #1

Question 1: For any language L, define the language Lπ as the set of all permutations of strings
in L. In other words,

Lπ = { s1s2 · · · sn | for some permutation π1π2 · · ·πn of 1, . . . , n, sπ1
sπ2

· · · sπn
is in L }

Here, n can be any non-negative integer. Note that Lπ will include the empty string if L does.

Give a procedure that takes a nondeterministic Turing Machine M that recognizes L and produces
a nondeterministic Turing Machine, Mπ, that recognizes the language Lπ. For simplicity, assume
that the input alphabet of M is {0, 1} (the solution should easily generalize to any input alphabet),
but the tape alphabet of M is not constrained. The state space for Mπ should be the state space
for M plus no more than five new states, one of which is the start state for Mπ. (Solutions with
more than five but less than ten additional states will receive part marks.) The transitions from the
states in Mπ that are taken from M should be the same in Mπ as in M . You may extend the tape
alphabet for Mπ to include symbols not in the tape alphabet for M .

You should give complete details of the transitions for the new states, as a table for the δ function
or as a state transition diagram.

Hint: Any permutation can be expressed as some sequence of swaps of adjacent symbols.

We can nondeterminismistically perform some number of swaps, changing 01 to 10 or 10 to 01,
then move the tape head to the beginning, and finally transition to the start state of M . A swap of 01
to 10 can itself be done in a way that exploits nondeterminism, by changing a 0 to 1, moving right,
then changing the following 1 to 0, but having no transition if the following symbol isn’t a 1, so that
that computation branch ends if changing the 0 to a 1 wasn’t the right thing to do. Finally, we need
to somehow mark the front of the tape to allow us to move the tape head back to the beginning. I’ll
use versions of 0 and 1 symbols marked with dots.

These operations are implemented with five additional states in the state diagram below:



Question 2: Let’s say that a tape square of a Turing Machine “has been used” if at any time
during the computation so far it was set to a symbol other than blank (even if it has since been set
to blank again). (Note: “has been used” is not standard terminology; I’ve just introduced it for this
question.) At any time during the computation by a Turing Machine, M , on an input string, w, a
finite set of tape squares will have been used. Let m be the number of the rightmost square that has
been used, numbering squares 1, 2, 3, . . . starting at the beginning of the tape (the leftmost square).
Let h be the number of the square where the tape head is positioned. Prove that for every M , there
is a constant k (which may depend on M , but not on the input, w) such that if at some point in the
computation of M on input w, the difference h − m is k or greater, then M does not halt on input
w.

Hint: If the tape head is k squares past the last square that has been used, how must it have
gotten there?

Let k be the number of states in M plus one. The basic idea is that if the tape head is k or more
squares past the last square used, M must have been in the same state more than once since it moved
past the last square used, which indicates that it is in a loop that will keep moving further right.

Here is a more detailed argument. Suppose the tape head is k or more tape squares past the last
tape square (numbered m) that has been used. Since M starts with the tape at the leftmost square,
and moves by only one square per step, there must have been some most recent time when the tape
head was positioned at square m. We consider the computation since that time (call it t). Since the
tape head moves only one square at a time, it must have been positioned since time t at all the squares
numbered m + 1, m + 2, . . . , m + k. Now let qi be the state that M was in the first time the tape
head was at square m + i (after time t). Since k is the number of states plus one, it’s not possible
that q1, . . . , qk are all different. Suppose that qj = qj+ℓ with ℓ > 0. We know that the operation of
M took it from being in state qj with the head at square m + j to being in the same state with the
tape head at a square further to the right, numbered m + j + ℓ. Furthermore, while M did this, it
always saw tape squares that were blank (since all this happed after time t, which was the last time
the tape head was at a square that has been used). M will therefore operate in exactly the same way
again, moving the tape head to the square numbered m + j + 2ℓ, and so forth, moving to the right
without limit. M will therefore never halt.

Question 3: Let L0 and L1 be languages on the alphabet Σ01 = {0, 1}. Define the language L2 on
the alphabet Σ012 = {0, 1, 2} that consists of strings of length zero or greater in which each symbol
is the sum of the symbols in corresponding positions from some string of the same length in L0 and
some string of the same length in L1. In other words,

L2 = { s1s2 · · · sn | for some a1a2 · · · an ∈ L0 and b1b2 · · · bn ∈ L1, each si is equal to ai + bi }

where n may be any non-negative integer. For example, if 0110 ∈ L0 and 1100 ∈ L1, then 1210 ∈ L2.

Prove that if L0 and L1 are Turing recognizable, then L2 is also Turing recognizable.

If L0 and L1 are recognizable, they are recognizable by some Turing Machines, say M0 and M1.
To show that L2 is recognizable, we can show how to construct a Turing Machine M2 that recognizes
L2, using runs of M0 and M1 as “subroutines”. We need to do this in a way that will allow M2 to
accept when it should even if some of the runs of M0 and M1 loop.

If a string w in {0, 1, 2}∗ has k occurrences of 1, there will be 2k ways that it can be written
as a sum of two strings in {0, 1}∗. For example, 1210 can be written as 0100 + 1110, 0110 + 1100,
1100 + 0110, or 1110 + 0100. We can construct M2 so that in parallel it runs M1 on each of the 2k

strings that are the first in these sums, while also running M2 on each of the 2k strings that are the
second in these sums. So for the example above, M1 is run on 0100, 0110, 1100, and 1110 and M2



is run on 1110, 1100, 0110, and 0100 (of course, these are the same sets of strings, just in different
orders). By “in parallel” is meant that it does one step of each in turn, so that each machine (on
each input) will perform computations regardless of whether or not some machine on some input is
looping. If at any point in these parallel runs, the computations of M1 and M2 on strings that add
up to w have both accepted, then M2 accepts. Otherwise, M2 just loops.

Question 4: For any language L, define the language B(L) as follows:

B(L) = { 0w |w ∈ L } ∪ { 1w |w ∈ L }

Prove that there exists a language L such that both B(L) and B(L) are not Turing recognizable.

Let L be any language that is not recognizable, such as ATM .

B(L) cannot be recognizable, because if it were recognizable, say by the Turing Machine M , then
L would also be recognizable. A machine S to recognize L could be constructed that on input w would
change the input tape from w to 1w, put the head at the beginning of the tape, and then transfer to
the start state of M . The machine S will accept w iff M accepts 1w, which by the definiton of B(L)
happens iff w is in L. So S recognizes L, which we know is impossible. Hence no machine M that
recognizes B(L) can exist.

B(L) cannot be recognizable, because if it were recognizable, say by Turing Machine M ′, then L
would also be recognizable. A machine S′ to recognize L could be constructed that on input w would
change the input tape from w to 0w, put the head at the beginning of the tape, and then transfer to
the start state of M ′. The machine S′ will accept w iff M ′ accepts 0w, which happens iff 0w ∈ B(L),
which happens iff 0w /∈ B(L), which by definition happens iff w /∈ L, which is equivalent to w ∈ L.
So S′ recognizes L, which we know is impossible. Hence no machine M ′ that recognizes B(L) can
exist.

Question 5: Let’s say that the computation of a Turing Machine M on input w is “confined” if
during computation the tape head is positioned at only a finite number of different tape squares.
(Note: “confined” is not a standard term; I’ve just introduced it for this question.) Obviously, any
computation that halts (in the accept or reject state) must be confined. If the computation loops, it
might or might not be confined.

Define the following language:

CONFTM = { 〈M, w〉 |M is a TM and the computation of M on w is confined }

Prove the following:

a) CONFTM is Turing recognizable.

b) CONFTM is not Turing recognizable.

Hints: If a computer has a finite amount of memory, and loops forever, what must happen sooner
or later? If a computer program loops forever, can you modify it so that it at least does something
as it loops?

Proof for (a): CONFTM can be recognized by a 4-tape Turing Machine that operates as follows.
The input 〈M, w〉 is on tape 1. We reject if it does not describe a valid Turing Machine M . Otherwise,
we copy w to tape 2 and simulate the operation of M on this input tape, using tape 3 for scratch
storage. On tape 4, we record every configuration of M as it is simulated. A configuration contains



all the information that determines the subsequent course of the computation of M — namely, the
state of M , the position of the tape head of M , and the contents of M ’s tape. After simulating each
step of M , we compare the current configuration of M with all previous configurations stored on tape
4. If the current configuration is the same as a previous configuration, we know that M is looping
through a finite number of configurations, which involve only a finite number of tape squares. We can
therefore accept, since the computation of M on w is confined. We also accept if M enters its accept
state or reject state. If we do not accept for one of these reasons, M must pass through an infinite
number of configurations, which must involve an infinite number of tape squares, so the computation
is not confined. This machine therefore recognizes CONFTM .

First proof for (b): CONFTM is not recognizable because if it were recognizable we could also rec-
ognize HALTTM , which we know is impossible. Given a Turing Machine S that recognizes CONFTM ,
we could create a Turing Machine T that recognizes HALTTM that operates as follows. On input
〈M, w〉, it rejects if the input is invalid, and otherwise modifies the description of M to produce a
description of a machine M ′ that behaves the same as M except that after every step of M it uses
one more tape square. After replacing the input tape with 〈M ′, w〉, the machine T transfers control
to the start state of S, so T accepts 〈M, w〉 iff S accepts 〈M ′, w〉

The tape alphabet for M ′ is Γ′ = Γ × {0, 1, 2}, where Γ is the tape alphabet for M (the blank
symbol for M ′ is identified with (blank, 0) ∈ Γ′). The {0, 1, 2} part of a symbol in Γ′ allows M ′ to
use more and more tape squares without actually changing what is computed. After performing each
step according to M , the machine M ′ write 2 to this part of the symbol under the tape head to mark
where it is, and then moves right until it reaches a blank square (ie, (blank, 0). It replaces this blank
with (blank, 1), moves the tape head back to the square marked with 2, and then continues with the
next step according to M .

It’s easy to see that M ′ uses t tape squares after it has done the equivalent of t steps of M . So
a computation of M ′ will be confined iff M ′ (and hence M) halts on input w. The machine T will
therefore recognize HALTTM , since it accepts iff 〈M ′, w〉 is in CONFTM , which happens iff 〈M, w〉
is in HALTTM .

Second proof for (b): As for the first proof, we will show that CONFTM is not recognizable
because if it were recognizable we could also recognize HALTTM , which we know is impossible. Given
a Turing Machine S′ that recognizes CONFTM , we could create a Turing Machine T ′ that recognizes
HALTTM that operates as follows. On input 〈M, w〉, it rejects if the input is invalid. Otherwise T ′

runs the recognizer S′ for CONFTM on 〈M, w〉 in parallel with a simulation of running M on w that
checks whether the current configuration is a repeat of one seen before, as in the proof of part (a). If
S′ accepts, or if a repeat configuration is found, T ′ accepts (we know that M will not halt on w). If
the simulation of M on w halts, T ′ rejects. One of these must eventually happen, so T ′ recognizes
CONFTM (and in fact it decides CONFTM ).


