
The Q Function

The expected value of a state if we perform a certain action, a, and then follow

policy π, is called Qπ(s, a).

It satisfies the following consistency condition:

Qπ(s, a) =
∑

s′

∑

r

∑

a′

P (st+1 = s′, rt+1 = r | st = s, at = a)P (at+1 = a′ | st+1 = s′) (r + γQπ(s′, a′))

Here, P (at+1 = a′ | st+1 = s′) is determined by the policy π.

If the optimal policy, π, is deterministic, always taking action π(s) in state s, then

clearly π(s) will be the action, a, that maximizes Qπ(s, a).

So knowing Qπ is enough to define the optimal policy. Learning Qπ is one way of

learning the optimal policy.

CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

Exploration While Learning an Optimal Policy

When we don’t know how the world works, we need to trade off between

exploiting what we do know and exploring for useful new knowledge.

A simple (not necessarily optimal) scheme is to take what seems to be the

optimal action with probability 1−ε, and take a random action (chosen

uniformly) with probability ε. A larger value for ε will increase “exploration”.

I’ll use this scheme below. In practice, though, it might be better to never take

actions that you’re pretty sure will have disastrous consequences.

CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

Q Learning

We can merge together learning the optimal policy (modified to allow for

exploration) with estimating the Q function for this policy. I’ll refer to this

procedure as “Q learning”, though strictly speaking, that term may not apply

when exploration is incorporated, as below.

We turn the consistency equation for Q into an update rule, except we update

only a bit, so that over time the updates will be based on expected values.

Based on our current Q function, in state s we take the action that maximizes

Q(s, a) with probability 1−ε, and take a random action with probability ε.

If we take action a in state s, and obtain immediate reward r and end in the new

state s′, then we update Q(s, a) as follows:

Q(s, a) ← (1−α)Q(s, a) + α (r + γ (εmean [Q(s′, a′)] + (1−ε)max[Q(s′, a′)]))

The mean and max are over actions a′. The learning rate α controls how fast we

allow Q to change. It needs to change slowly enough that the average change over

many updates estimates the expected change.

CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

A Demonstration Problem

A robot travels on a circular track, with ten positions, labelled 1, 2, . . . , 10.

At each time step, the robot can take any of three actions:

1 Move to the next-lower-numbered position, wrapping from 1 to 10

2 Don’t move

3 Move to the next-higher-numbered position, wrapping from 10 to 1

The movement indicated above happens with probability 0.95. With probability

0.05, the next state is instead chosen from among all ten, with equal probabilities.

If the robot chooses action 1 or action 3, it receives a reward of +1 with

probability s′/10, where s′ is the new state. Otherwise, it receives a reward of 0.

So, for example,

P (st+1 = 8, rt+1 = 1 | st = 7, a = 3) = (0.95 + 0.05/10)× 8/10

P (st+1 = 3, rt+1 = 0 | st = 9, a = 2) = (0.05/10)× 1

CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

R Code for Q Learning

R code for doing Q learning, condensed from a program on the course web page:

simulate = function (init, world, gamma, alpha, epsilon, steps)

{ ...

s = init()

for (t in 1:steps)

{ if (runif(1)<epsilon)

{ a = sample(n.actions,1)

}

else

{ a = order(Q[s,])[n.actions]

}

w = world(s,a)

r = w$r

sn = w$s

Q[s,a] = (1-alpha) * Q[s,a] +

alpha * (r + gamma * (epsilon*mean(Q[sn,]) + (1-epsilon)*max(Q[sn,])))

s = sn

}

... }
CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

R Code for the Demonstration

init1 = function () { sample(n.states,1) }

world1 = function (s, a)

{ if (runif(1)<0.05)

{ s = sample(n.states,1)

}

else

{ s = s + (a-2)

if (s<1) s = n.states

if (s>n.states) s = 1

}

if (a==2)

{ r = 0

}

else

{ r = as.numeric (runif(1) < s/n.states)

}

list (s=s, r=r)

}

result1 = simulate (init1, world1, gamma, alpha, epsilon, n.steps)

CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

Plots From a Simulation Run

500,000 times steps. First and last 200 shown at closer scale.

0 50 100 150 200

2
4

6
8

10

time step

st
at

e

0 50 100 150 200

1.
0

1.
5

2.
0

2.
5

3.
0

time step

ac
tio

n

0 50 100 150 200

0.
0

0.
4

0.
8

time step

re
w

ar
d

/ s
m

oo
th

ed
 r

ew
ar

d

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

2
4

6
8

10

time step

st
at

e

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

1.
0

1.
5

2.
0

2.
5

3.
0

time step

ac
tio

n

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
0

0.
4

0.
8

time step

re
w

ar
d

/ s
m

oo
th

ed
 r

ew
ar

d

499800 499850 499900 499950 500000

2
4

6
8

10

time step

st
at

e

499800 499850 499900 499950 500000

1.
0

1.
5

2.
0

2.
5

3.
0

time step

ac
tio

n

499800 499850 499900 499950 500000

0.
0

0.
4

0.
8

time step

re
w

ar
d

/ s
m

oo
th

ed
 r

ew
ar

d

The grey line is an exponential smoothing of rewards up a given time.

CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

The Q Function Learned From the Simulation Run

Here is the table of the Q function after 500,000 time steps:

Action

1 2 3

1 17.29 16.27 15.68

2 16.53 15.43 15.17

3 15.53 14.83 15.88

4 15.29 15.31 16.24

State 5 15.66 15.64 16.50

6 16.02 15.94 16.83

7 16.61 16.18 17.00

8 16.93 16.32 17.25

9 17.03 16.30 17.29

10 17.25 16.30 16.40

Note how the optimal direction to move changes between state 2 and 3, and how

action 2 (don’t move) always has value about one less than the optimal action.

CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

How Well Does Q Learning Work When the State is Wrong?

We’ve so far assumed that Q learning is done with the correct state, that actually

is all that’s needed to predict future states and rewards. What if this is false?

Does it still do something reasonable?

I modified the problem with the circular track so that each of the ten positions is

either “marked” or not — this is part of the real state, but not part of the state

seen by Q learning.

At each time step, a position that is not marked becomes marked with probability

0.3. When the robot’s position changes, it gets +1 reward if its new position is

marked. The position the robot is at becomes unmarked, and remains so until it

moves.

Finally, the robot gets reward of −10 when it is at position 1.

Without this last modification, the simple strategy of constantly moving in one

direction is pretty much optimal. The need to avoid position 1 makes things more

interesting.

CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

R Code for the Modified Problem

init2 = function ()

{ marks <<- rep(0,n.states) # Global variable storing extra part of state

sample(n.states,1)

}

world2 = function (s, a)

{ if (runif(1)<0.05)

{ s = sample(n.states,1)

}

else

{ s = s + (a-2)

if (s<1) s = n.states

if (s>n.states) s = 1

}

r = marks[s] - 10*as.numeric(s==1)

marks <<- as.numeric (marks>0 | (runif(n.states)<0.3))

marks[s] <<- 0

list (s=s, r=r)

}

CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

Plot of Learning & Performance

0 20 40 60 80 100

2
4

6
8

10

time step

st
at

e

0 20 40 60 80 100

1.
0

1.
5

2.
0

2.
5

3.
0

time step

ac
tio

n

0 20 40 60 80 100

−
10

−
6

−
2

time step

re
w

ar
d

/ s
m

oo
th

ed
 r

ew
ar

d

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

2
4

6
8

10

time step

st
at

e

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

1.
0

1.
5

2.
0

2.
5

3.
0

time step

ac
tio

n

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

−
8

−
4

0

time step

re
w

ar
d

/ s
m

oo
th

ed
 r

ew
ar

d

999900 999940 999980

4
5

6
7

8
9

time step

st
at

e

999900 999940 999980

1.
0

1.
5

2.
0

2.
5

3.
0

time step

ac
tio

n

999900 999940 999980

0.
0

0.
4

0.
8

time step

re
w

ar
d

/ s
m

oo
th

ed
 r

ew
ar

d

The average reward over the one million time steps was 0.363.

CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

Table of Q Function Learned

1 2 3 best

action

1 7.27 -2.55 7.85 3

2 -1.88 6.80 7.95 3

3 7.19 6.94 7.75 3

4 7.29 6.90 7.65 3

5 7.33 6.94 7.33 1

6 7.33 6.95 7.13 1

7 7.25 6.75 7.20 1

8 7.24 6.80 7.09 1

9 7.22 6.70 7.15 1

10 7.22 6.53 -1.64 1

The robot moves to higher positions in positions 1, 2, 3, 4 and to lower positions

in positions 5, 6, 7, 8, 9, 10. (The action to do at position 5 is almost a toss-up.)

This avoids position 1, usually going back forth and between two other positions.

CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

Adding Some Memory to the State

Going back and forth between two positions (eg, 4 and 5) isn’t optimal. Marks

will get set at other positions, but won’t be collected as reward. Average reward

would be only 0.3 per time step, if it weren’t for the occasional random moves to

other positions.

Solution: Go back and forth over a larger set of positions, while avoiding position 1.

For this, the robot needs to remember which way it’s going. So we provide it with

one bit of memory, which is part of the state (so there are now 20 states).

The robot now has six possible actions — the three movements with no change in

the memoery bit, and the three movements with the memory bit being toggled.

CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

R Code for the Modified Problem with Memory

world2m = function (s, a)

{ bit = as.numeric(s>n.states/2) # Obtain memory bit from state

s = s - bit*n.states/2 # Get rid of memory from state for now

if (runif(1)<0.05)

{ s = sample(n.states/2,1) # Move to random position

}

else

{ if (a>3) # Action that toggles memory bit

{ bit = 1-bit

a = a-3

}

s = s + (a-2) # Move according to action

if (s<1) s = n.states/2

if (s>n.states/2) s = 1

}

r = marks[s] - 10*as.numeric(s==1) # Look at marks and update

marks <<- as.numeric (marks>0 | (runif(n.states)<0.3))

marks[s] <<- 0

s = s + bit*n.states/2 # Add memory bit back into state

list (s=s, r=r)

}
CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

Plot of Learning & Performance

0 50 100 150 200

2
4

6
8

10

time step

st
at

e

0 50 100 150 200

1.
0

1.
5

2.
0

2.
5

3.
0

time step

ac
tio

n

0 50 100 150 200

−
8

−
4

0

time step

re
w

ar
d

/ s
m

oo
th

ed
 r

ew
ar

d

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

2
4

6
8

10

time step

st
at

e

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

1.
0

1.
5

2.
0

2.
5

3.
0

time step

ac
tio

n

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

−
8

−
4

0

time step

re
w

ar
d

/ s
m

oo
th

ed
 r

ew
ar

d

999800 999850 999900 999950 1000000

2
4

6
8

time step

st
at

e

999800 999850 999900 999950 1000000

1.
0

1.
5

2.
0

2.
5

3.
0

time step

ac
tio

n

999800 999850 999900 999950 1000000

−
8

−
4

0

time step

re
w

ar
d

/ s
m

oo
th

ed
 r

ew
ar

d

The average reward over the one million time steps was 0.528.

CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

Table of Q Function Learned
1 2 3 4 5 6 move toggle

1 5.54 -0.20 4.80 4.43 -0.76 11.27 3 1

2 -0.72 7.02 8.34 0.04 6.84 11.61 3 1

3 8.89 8.74 9.45 8.77 8.74 11.51 3 1

4 11.08 10.74 11.65 11.06 10.72 11.19 3 0

5 11.19 10.75 12.17 11.22 10.94 11.44 3 0

6 11.30 11.00 12.06 11.29 11.16 11.52 3 0

7 11.46 11.10 12.02 11.49 11.15 11.54 3 0

8 11.39 10.84 11.98 11.39 11.06 11.46 3 0

9 11.15 10.74 10.93 11.76 10.76 10.94 1 1

10 7.31 6.26 -2.42 11.42 6.69 -1.61 1 1

11 4.88 -0.79 6.19 4.17 -0.75 11.36 3 1

12 -0.33 6.31 8.04 -0.32 6.77 11.52 3 1

13 8.89 8.78 9.61 8.92 8.65 11.63 3 1

14 11.04 10.52 11.03 11.09 10.53 11.73 3 1

15 11.46 10.99 11.43 11.76 10.93 11.09 1 1

16 12.01 11.13 11.12 11.47 11.05 11.32 1 0

17 12.13 11.08 11.25 11.49 11.00 11.26 1 0

18 12.05 11.05 11.14 11.37 10.90 11.20 1 0

19 11.69 10.73 10.96 11.05 10.64 10.94 1 0

20 7.09 6.71 -0.14 11.47 5.75 -0.46 1 1
CSC 411: Machine Learning and Data Mining – Radford Neal, University of Toronto – 2006

