MCMC for non-linear state space models using ensembles of latent sequences

Alexander Y. Shestopaloff , Dept. of Statistical Sciences, University of Toronto
Radford M. Neal, Dept. of Statistical Sciences and Dept. of Computer Science, University of Toronto

Non-linear state space models are a widely-used class of models for biological, economic, and physical processes. Fitting these models to observed data is a difficult inference problem that has no straightforward solution. We take a Bayesian approach to the inference of unknown parameters of a non-linear state model; this, in turn, requires the availability of efficient Markov Chain Monte Carlo (MCMC) sampling methods for the latent (hidden) variables and model parameters. Using the ensemble technique of Neal (2010) and the embedded HMM technique of Neal (2003), we introduce a new Markov Chain Monte Carlo method for non-linear state space models. The key idea is to perform parameter updates conditional on an enormously large ensemble of latent sequences, as opposed to a single sequence, as with existing methods. We look at the performance of this ensemble method when doing Bayesian inference in the Ricker model of population dynamics. We show that for this problem, the ensemble method is vastly more efficient than a simple Metropolis method, as well as 1.9 to 12.0 times more efficient than a single-sequence embedded HMM method, when all methods are tuned appropriately. We also introduce a way of speeding up the ensemble method by performing partial backward passes to discard poor proposals at low computational cost, resulting in a final efficiency gain of 3.4 to 20.4 times over the single-sequence method.

Technical report, 30 April 2013, 18 pages: pdf.

Also available from arXiv.org.