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Abstract. We introduce a new nonlinear model for classification, in which we model the joint

distribution of response variable, y, and covariates, x, non-parametrically using Dirichlet process

mixtures. We keep the relationship between y and x linear within each component of the mixture.

The overall relationship becomes nonlinear if the mixture contains more than one component. We

use simulated data to compare the performance of this new approach to a simple multinomial logit

(MNL) model, an MNL model with quadratic terms, and a decision tree model. We also evaluate

our approach on a protein fold classification problem, and find that our model provides substantial

improvement over previous methods, which were based on Neural Networks (NN) and Support

Vector Machines (SVM). Folding classes of protein have a hierarchical structure. We extend our

method to classification problems where a class hierarchy is available. We find that using the prior

information regarding the hierarchical structure of protein folds can result in higher predictive

accuracy.

1 Introduction

In regression and classification models, estimation of parameters and interpretation of results are

easier if we assume a simple distributional form (e.g., normality) and regard the relationship between

response variable and covariates as linear. However, the performance of the model obtained depends

on the appropriateness of these assumptions. Poor performance may result from assuming wrong

distributions, or regarding relationships as linear when they are not. In this paper, we introduce a

new model based on a Dirichlet process mixture of simple distributions, which is more flexible to

capture nonlinear relationships.

A Dirichlet process, D(G0, γ), with baseline distribution G0 and scale parameter γ, is a dis-

tribution over distributions. Ferguson (1973) introduced the Dirichlet process as a class of prior

distributions for which the support is large, and the posterior distribution is manageable analyti-

cally. Using the Polya urn scheme, Blackwell and MacQueen (1973) showed that the distributions
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sampled from a Dirichlet process are discrete almost surely. The idea of using a Dirichlet process

as the prior for the mixing proportions of a simple distribution (e.g., Gaussian) was first introduced

by Antoniak (1974).

We will describe the Dirichlet process mixture model as a limit of finite mixture model (see Neal

(2000) for further description). Suppose y1, ..., yn are drawn independently from some unknown

distribution. We can model the distribution of y as a mixture of simple distributions such that:

P (y) =
C∑

c=1

pcf(y|φc)

Here, pc are the mixing proportions, and f is a simple class of distributions, such as normal with

φ = (µ, σ). We first assume that the number of mixing components, C, is finite. In this case, a

common prior for pc is a symmetric Dirichlet distribution:

P (p1, ..., pC) =
Γ(γ)

Γ(γ/C)C

C∏

c=1

p(γ/C)−1
c

where pc ≥ 0 and
∑

pc = 1. Parameters φc are assumed to be independent under the prior with

distribution G0. We can use mixture identifiers, ci, and represent the above mixture model as

follows (Neal, 2000):

yi|ci, φ ∼ F (φci
)

ci|p1, ..., pC ∼ Discrete(p1, ..., pC)

p1, ..., pC ∼ Dirichlet(γ/C, ...., γ/C)

φc ∼ G0

(1)

By integrating over the Dirichlet prior, we can eliminate mixing proportions, pc, and obtain the

following conditional distribution for ci:

P (ci = c|c1, ..., ci−1) =
nic + γ/C

i − 1 + γ
(2)

Here, nic represents the number of data points previously (i.e., before the ith) assigned to component

c. The probability of assigning each component to the first data point is 1/C. As we proceed, this

probability becomes higher for components with larger numbers of samples (i.e., larger nic).

When C goes to infinity, the conditional probabilities (2) reach the following limits:

P (ci = c|c1, ..., ci−1) →
nic

i − 1 + γ

P (ci 6= cj∀j < i|c1, ..., ci−1) →
γ

i − 1 + γ

(3)

As a result, the conditional probability for θi, where θi = φci
, becomes

θi|θ1, ..., θi−1 ∼
1

i − 1 + γ

∑

j<i

δ(θj) +
γ

i − 1 + γ
G0 (4)
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where δ(θ) is a point mass distribution at θ. This is equivalent to the conditional probabilities

implied by the Dirichlet process mixture model, which has the following form:

yi|θi ∼ F (θi)

θi|G ∼ G (5)

G ∼ D(G0, γ)

That is, the limit of the finite mixture model (1) is equivalent to the Dirichlet process mixture

model (5) as the number of components goes to infinity. G is the distribution over θ’s, and has a

Dirichlet process prior, D. The parameters of the Dirichlet process prior are G0, a distribution from

which θ’s are sampled, and γ, a positive scale parameter that controls the number of components in

the mixture, such that a larger γ results in a larger number of components. Phrased this way, each

data point, i, has its own parameters, θi, drawn from a distribution that is drawn from a Dirichlet

process prior. But since distributions drawn from a Dirichlet process are discrete (almost surely),

the θi for different data points may be the same.

Bush and MacEachern (1996), Escobar and West (1995), MacEachern and Müller (1998), and

Neal (2000) have used this method for density estimation. Müller et al. (1996) used Dirichlet process

mixtures for curve fitting. They model the joint distribution of data pairs (xi, yi) as a Dirichlet

process mixture of multivariate normals. The conditional distribution, P (y|x), and the expected

value, E(y|x), are estimated based on this distribution for a grid of x’s (with interpolation) to

obtain a nonparametric curve. The application of this approach (as presented by Müller et al.,

1996) is restricted to continuous variables. Moreover, this model is feasible only for problems with

a small number of covariates, p. For data with moderate to large dimensionality, estimation of

the joint distribution is very difficult both statistically and computationally. This is mostly due to

the difficulties that arise when simulating from the posterior distribution of large full covariance

matrices. In this approach, if a mixture model has C components, the set of full covariance

matrices have Cp(p + 1)/2 parameters. For large p, the computational burden of estimating these

parameters might be overwhelming. Estimating full covariance matrices can also cause statistical

difficulties since we need to assure that covariance matrices are positive semidefinite. Conjugate

priors based the inverse Wishart distribution satisfy this requirement, but they lack flexibility

(Daniels and Kass, 1999). Flat priors may not be suitable either, since they can lead to improper

posterior distributions, and they can be unintentionally informative (Daniels and Kass, 1999). A

common approach to address these issues is to use decomposition methods in specifying priors

for full covariance matrices (see for example, Daniels and Kass, 1999; Cai and Dunson, 2006).

Although this approach has demonstrated some computational advantages over direct estimation

of full covariance matrices, it is not yet feasible for high-dimensional variables. For example, Cai

and Dunson (2006) recommend their approach only for problems with less than 20 covariates.

We introduce a new nonlinear Bayesian model, which also non-parametrically estimates the joint

distribution of the response variable, y, and covariates, x, using Dirichlet process mixtures. Within

each component, we assume the covariates are independent, and model the dependence between y

and x using a linear model. Therefore, unlike the method of Müller et al. (1996), our approach can

be used for modeling data with a large number of covariates, since the covariance matrix for one

mixture component is highly restricted. Moreover, this method can be used for categorical as well

as continuous response variables by using a generalized linear model instead of the linear model of
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each component.

Our focus in this paper is on classification models with a multi-category response. We also

show how our method can be extended to classification problems where classes have a hierarchical

structure, and to problems with multiple sources of information. The next section describes our

methodology. In Section 3, we illustrate our approach and evaluate its performance based on

simulated data. In Section 4, we present the results of applying our model to an actual classification

problem, which attempts to identify the folding class of a protein sequence based on the composition

of its amino acids. Folding classes of protein have a hierarchical structure. In Section 5, we extend

our approach to classification problems of this sort where a class hierarchy is available, and evaluate

the performance of this new model on the protein fold recognition dataset. Section 6 shows how

this approach can be used for multiple sources of information. Finally, Section 7 is devoted to

discussion, future directions and limitations of the proposed method.

2 Methodology

Consider a classification problem with continuous covariates, x = (x1, ..., xp), and a categorical

response variable, y, with J classes. To model the relationship between y and x, we model the

joint distribution of y and x non-parametrically using Dirichlet process mixtures. Within each

component of the mixture, the relationship between y and x is assumed to be linear. The overall

relationship becomes nonlinear if the mixture contains more than one component. This way, while

we relax the assumption of linearity, the flexibility of the relationship is controlled. Our model has

the following form:

yi, xi1, ..., xip|θi ∼ F (θi)

θi|G ∼ G

G ∼ D(G0, γ)

where i = 1, ..., n indexes the observations, and l = 1, ..., p indexes the covariates. In our model,

θ = (µ, σ, α, β), and the component distributions, F (θ), are defined based on P (y, x) = P (x)P (y|x)

as follows:

xil ∼ N(µl, σ
2
l )

P (yi = j|xi, α, β) =
exp(αj + xiβj)∑J

j′=1 exp(αj′ + xiβj′)

Here, the parameters µ = (µ1, ..., µp) and σ = (σ1, ..., σp) are the means and standard deviations

of covariates in each component. The component index, c, is omitted for simplicity. Within a

component, α = (α1, ..., αJ), and β = (β1, ..., βJ ) are the parameters of the multinomial logit

(MNL) model, and J is the number of classes. The entire set of regression coefficients, β, can

be presented as a p × J matrix. This representation is redundant, since one of the βj ’s (where

j = 1, ..., J) can be set to zero without changing the set of relationships expressible with the model,

but removing this redundancy would make it difficult to specify a prior that treats all classes

symmetrically. In this parameterization, what matters is the difference between the parameters of

different classes.
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Although the covariates in each component are assumed to be independent with normal priors,

this independence of covariates exists only locally (within a component). Their global (over all

components) dependency is modeled by assigning data to different components (i.e., clustering).

The relationship between y and x within a component is captured using an MNL model. Therefore,

the relationship is linear locally, but nonlinear globally.

We could assume that y and x are independent within components, and capture the dependence

between the response and the covariates by clustering too. However, this may lead to poor per-

formance (e.g., when predicting the response for new observations) if the dependence of y on x is

difficult to capture using clustering alone. Alternatively, we could also assume that the covariates

are dependent within a component. For continuous response variables, this becomes equivalent to

the model proposed by Müller et al. (1996). However, as we discussed above, this approach may

be practically infeasible for problems with a moderate to large number of covariates. We believe

that our method is an appropriate compromise between these two alternatives.

We define G0 as follows:

µl|µ0, σ0 ∼ N(µ0, σ
2
0)

log(σ2
l )|Mσ, Vσ ∼ N(Mσ, V 2

σ )

αj |τ ∼ N(0, τ 2)

βjl|ν ∼ N(0, ν2)

The parameters of G0 may in turn depend on higher level hyperparameters. For example, we can

regard the variances of coefficients as hyperparameters with the following priors:

log(τ2)|Mτ , Vτ ∼ N(Mτ , V
2
τ )

log(ν2)|Mν , Vν ∼ N(Mν , V
2
ν )

We use MCMC algorithms for posterior sampling. Samples simulated from the posterior distri-

bution are used to estimate posterior predictive probabilities. We predict the response values for

new cases based on these probabilities. For a new case with covariates x′, the posterior predictive

probability of response variable, y′, is estimated as follows:

P (y′ = j|x′) =
P (y′ = j, x′)

P (x′)

where

P (y′ = j, x′) =
1

S

S∑

s=1

P (y′ = j, x′|G0, θ
(s))

P (x′) =
1

S

S∑

s=1

P (x′|G0, θ
(s))

Here, S is the number of post-convergence samples from MCMC, and θ(s) represents the set of

parameters obtained at iteration s.

Neal (2000) presented several possible algorithms for sampling from the posterior distribution

of Dirichlet process mixtures. In this research, we use Gibbs sampling with auxiliary parameters
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Figure 1: An illustration of our model for a binary (black and white) classification problem with
two covariates. Here, the mixture has two components, which are shown with circles and squares.
In each component, an MNL model separates the two classes into “black” or “white” with a linear
decision boundary.

(Neal’s algorithm 8). This approach is similar to the algorithm proposed by MacEachern and Müller

(1998), with a difference that the auxiliary parameters exist only temporarily. To improve the

MCMC sampling, after each update using auxiliary variables, we update the component parameters

using their corresponding data points. For a complete description of this method, see the paper

by Neal (2000). All our models are coded in MATLAB and are available online at http://www.

utstat.utoronto.ca/~babak.

In Figure 1, we show a state from an MCMC simulation for our model in which there are

two covariates and the response variable is binary. In this iteration, our model has identified

two components (circles and squares). Within a component, two classes (stars and crosses) are

separated using an MNL model. Note, the decision boundaries shown are component specific. The

overall decision boundary, which is a smooth function, is not shown in this figure. In our approach,

division of the data into components and fitting of MNL models are performed simultaneously.

3 Results for synthetic data

In this section, we illustrate our approach, henceforth called dpMNL, using synthetic data. We

compare our model to a simple MNL model, an MNL model with quadratic terms (i.e., xlxk, where
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l = 1, ..., p and k = 1, ..., p), referred to as qMNL, and a decision tree model (Breiman et al., 1993)

that uses 10-fold cross-validation for pruning. For the simple MNL model, we use both Bayesian

and maximum likelihood estimation. The models are compared with respect to their accuracy rate

and the F1 measure. Accuracy rate is defined as the percentage of the times the correct class is

predicted. F1 is a common measurement in machine learning and is defined as:

F1 =
1

J

J∑

j=1

2Aj

2Aj + Bj + Cj

where Aj is the number of cases which are correctly assigned to class j, Bj is the number cases

incorrectly assigned to class j, and Cj is the number of cases which belong to the class j but are

assigned to other classes.

We do two tests. In the first test, we generate data according to the dpMNL model. Our

objective is to evaluate the performance of our model when the distribution of data is comprised of

multiple components. In the second test, we generate data using a smooth nonlinear function. Our

goal is to evaluate the robustness of our model when data actually come from a different model.

For the first test, we compare the models using a synthetic four-way classification problem with

5 covariates. Data are generated according to our model with G0 being the following prior:

µl ∼ N(0, 1)

log(σ2
l ) ∼ N(0, 22)

log(τ2) ∼ N(0, 0.12)

log(ν2) ∼ N(0, 22)

Note that αj |τ ∼ N(0, τ 2), and βjl|ν ∼ N(0, ν2), where l = 1, ..., 5 and j = 1, ..., 4. From the above

baseline prior, we sample two components, θ1 and θ2, where θ = (µ, σ, η, ν, α, β). For each θ, we

generate 5000 data points by first drawing xil ∼ N(µl, σl) and then sampling y using the following

MNL model:

P (y = j|x, α, β) =
exp(αj + xβj)∑J

j′=1 exp(αj′ + xβj′)

The overall sample size is 10000. We randomly split the data to the training set, with 100 data

points, and test set, with 9900 data points. We use the training set to fit the models, and use

the independent test set to evaluate their performance. The regression parameters of the Bayesian

MNL model with Bayesian estimation and the qMNL model have the following priors:

αj |τ ∼ N(0, τ 2)

βjl|ν ∼ N(0, ν2)

log(η) ∼ N(0, 12)

log(ν) ∼ N(0, 22)

To fit the decision tree models (Breiman et al., 1993), we used the available functions in MAT-

LAB. These functions are treefit, treetest (for cross-validation) and treeprune.
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Model Accuracy (%) F1 (%)

Baseline 45.57 15.48

MNL (Maximum Likelihood) 77.30 66.65

MNL 78.39 66.52

qMNL 83.60 74.16

Tree (Cross Validation) 70.87 55.82

dpMNL 89.21 81.00

Table 1: Simulation 1: the average performance of models based on 50 simulated datasets. The
Baseline model assigns test cases to the class with the highest frequency in the training set.

The above procedure was repeated 50 times. Each time, new θ1 and θ2 were sampled from the

prior, and a new dataset was created based on these θ’s. We used Hamiltonian dynamics (Neal,

1993) for updating the regression parameters, α’s and β’s. For all other parameters, we used

single-variable slice sampling (Neal, 2003) with the “stepping out” procedure to find an interval

around the current point, and then the “shrinkage” procedure to sample from this interval. We also

used slice sampling for updating the concentration parameter γ, where log(γ) ∼ N(−3, 22). This

prior encourages smaller values of γ, which results in smaller number of components. Note that

the likelihood for γ depends only on C, the number of unique components (Neal, 2000; Escobar

and West, 1995). For all models we ran 5000 MCMC iterations to sample from the posterior

distributions. We discarded the initial 500 samples and used the rest for prediction.

The average results (over 50 repetitions) are presented in Table 1. As we can see, our dpMNL

model provides better results compared to all other models. The improvements are statistically

significant (p-values < 0.001 based accuracy rates) using a paired t-test with n = 50.

Since the data were generated according to the dpMNL model, it is not surprising that this

model had the best performance compared to other models. In fact, as we increase the number

of components, the amount of improvement using our model becomes more and more substantial

(results not shown). To evaluate the robustness of the dpMNL model, we performed another test.

This time, we generated xi1, xi2, xi3 (where i = 1, ..., 10000) from the Uniform(0, 5) distribution,

and generated a binary response variable, yi, according the following model:

P (y = 1|x) =
1

1 + exp[a1 sin(x1.04
1 + 1.2) + x1 cos(a2x2 + 0.7) + a3x3 − 2]

where a1, a2 and a3 are randomly sampled from N(1, 0.52). The function used to generate y is a

smooth nonlinear function of covariates. The covariates are not clustered, so the generated data

do not conform with the assumptions of our model. Moreover, this function includes a completely

arbitrary set of constants to ensure the results are generalizable. Figure 2 shows a random sample

from this model for a3 = 0. In this figure, the dotted line is the optimal decision boundary.

We generated 50 datasets (n = 10000) using the above model. Each time, we sampled new

covariates, x, new constant values, a1, a2, a3, and new response variable, y. As before, models were

trained on 100 data points, and tested on the remaining samples. The average results over 50

datasets are presented in Table 2. As before, the dpMNL model provides significantly (all p-values

are smaller than 0.001) better performance compared to all other models. This time, however, the

performance of the qMNL model is closer to the results from the dpMNL model.
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Figure 2: A random sample generated according to Simulation 2 with a3 = 0. The dotted line is
the optimal boundary function.

Model Accuracy (%) F1 (%)

Baseline 61.96 37.99

MNL (Maximum Likelihood) 73.58 68.33

MNL 73.58 67.92

qMNL 75.60 70.12

Tree (Cross Validation) 73.47 66.94

dpMNL 77.80 73.13

Table 2: Simulation 2: the average performance of models based on 50 simulated datasets. The
Baseline model assigns test cases to the class with the highest frequency in the training set.

4 Results for protein fold classification

In this section, we consider the problem of predicting a protein’s 3D structure (i.e., folding class)

based on its sequence. For this problem, it is common to presume that the number of possible

folds is fixed, and use a classification model to assign a protein to one of the folding classes. There

are more than 600 folding patterns identified in the SCOP (Structural Classification of Proteins)

database (Lo Conte et al., 2000). In this database, proteins are considered to have the same folding

class if they have the same major secondary structure in the same arrangement with the same

topological connections.

We apply our model to a protein fold recognition dataset provided by Ding and Dubchak (2001).

The proteins in this dataset are obtained from the PDB select database (Hobohm et al., 1992;
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Hobohm and Sander, 1994) such that two proteins have no more than 35% of the sequence identity

for aligned subsequences larger than 80 residues. Originally, the resulting dataset included 128

unique folds. However, Ding and Dubchak (2001) selected only 27 most populated folds (311

proteins) for their analysis. They evaluated their models based on an independent sample (i.e., test

set) obtained from PDB-40D Lo Conte et al. (2000). PDB-40D contains the SCOP sequences with

less than 40% identity with each other. Ding and Dubchak (2001) selected 383 representatives of

the same 27 folds in the training set with no more than 35% identity to the training sequences. The

training and test datasets are available online at http://crd.lbl.gov/~cding/protein/. These

datasets include the length of protein sequences, and 20 other covariates based on the percentage

composition of different amino acids. For a detail description of data, see Dubchak et al. (1995).

Ding and Dubchak (2001) trained several Support Vector Machines (SVM) with nonlinear kernel

functions, and Neural Networks (NN) with different architecture on this dataset. They also tried

different classification schemes, namely, one versus others (OvO), unique one versus others (uOvO),

and all versus all (AvA). The details for these methods can be found in their paper. The performance

of these models on the test set is presented in Table 3.

We first centered the covariates so they have mean 0. We trained our MNL and dpMNL on the

training set, and evaluated their performance on the test set. For these models, we used similar

priors as the ones used in the previous section. However, the hyperparameters for the variances of

regression parameters are more elaborate. We used the following priors for the MNL model:

αj |η ∼ N(0, η2)

log(η2) ∼ N(0, 22)

βjl|ξ, σl ∼ N(0, ξ2σ2
l )

log(ξ2) ∼ N(0, 1)

log(σ2
l ) ∼ N(−3, 42)

Here, one hyperparameter, σl, is used to control the variance of all coefficients, βjl (where j =

1, ..., J), for covariate xl. If a covariate is irrelevant, its hyperparameter will tend to be small,

forcing the coefficients for that covariate to be near zero. This method is called Automatic Relevance

Determination (ARD), and was suggested by Neal (1996). We also used another hyperparameter,

ξ, to control the overall magnitude of all β’s. This way, σl controls the relevance of covariate xl

compared to other covariates, and ξ controls the overall usefulness of all covariates in separating

all classes. The standard deviation of βjl is therefore equal to ξσl.

We used the same scheme for the MNL models in dpMNL. Note that, in this model one σl

controls all βjlc, where j = 1, ..., J indexes classes, and c = 1, ..., C indexes the unique components

in the mixture. Therefore, the standard deviation of βjlc is ξσlνc. Here, νc is specific to each

component c, and controls the overall effect of coefficients in that component. That is, while σ and

ξ are global hyperparameters common between all components, νc is a local hyperparameter within

a component. Similarly, the standard deviation of intercepts, αjc in component c is ητc. We used

N(0, 1) as the prior for νc and τc.

We also needed to specify priors for µl and σl, the mean and standard deviation of covariate xl,
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Model Accuracy (%) F1 (%)

NN-OvO 20.5 -

SVM-OvO 43.5 -

SVM-uOvO 49.4 -

SVM-AvA 44.9 -

MNL 50.0 41.2

dpMNL 58.6 53.0

Table 3: Performance of models based on protein fold classification data. NN and SVM use
maximum likelihood estimation, and are developed by Ding and Dubchak (2001).

where l = 1, ..., p. For these parameters, we used the following priors:

µlc|µ0,l, σ0,l ∼ N(µ0,l, σ
2
0,l)

µ0,l ∼ N(0, 52)

log(σ2
0,l) ∼ N(0, 22)

log(σ2
lc)|Mσ,l, Vσ,l ∼ N(Mσ,l, V

2
σ,l)

Mσ,l ∼ N(0, 12)

log(V 2
σ,l) ∼ N(0, 22)

As we can see, the priors depend on higher level hyperparameters. This provides a more flexi-

ble scheme. If, for example, the components are not different with respect to covariate xl, the

corresponding variance, σ2
0,l, becomes small, forcing µlc close to their overall mean, µ0,l.

For each of our Bayesian models discussed in this section (and also in the following sections),

we performed four simultaneous MCMC simulations each of size 10000. The chains have different

starting values. We discarded the first 1000 samples from each chain and used the remaining

samples for predictions. For this problem, running multiple chains results in faster and more

efficient sampling. Simulating the Markov chain for 10 iterations took about half a minute for

MNL, and about 3 minutes for dpMNL, using a MATLAB implementation on an UltraSPARC III

machine.

The results for MNL and dpMNL models are presented in Table 3. As a benchmark, we also

present the results for the SVM and NN models developed by Ding and Dubchak (2001) on the

exact same dataset. As we can see, our linear MNL model provides better accuracy rate compared

to the SVM and NN models developed by Ding and Dubchak (2001). Our dpMNL model provides

an additional improvement over the MNL model. This shows that there is in fact a nonlinear

relationship between folding classes and the composition of amino acids, and our nonlinear model

could successfully identify this relationship.

It is worth noting the performance of the NN models is influenced by many design choices, and

by model assumptions. We found that Bayesian neural networks model (Neal, 1996) had better

performance than the NN model of Ding and Dubchak (2001). Our NN model performs very

similarly to the performance of the dpMNL model.
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Figure 3: A simple representation of our hierarchical classification model.

5 Extension to hierarchical classes

In the previous section, we modeled the folding classes as a set of unrelated entities. However,

these classes are not completely unrelated, and can be grouped into four major structural classes

known as α, β, α/β, and α + β. Ding and Dubchak (2001) show the corresponding hierarchical

scheme (Table 1 in their paper). We have previously introduced a new approach for modeling

hierarchical classes (Shahbaba and Neal, 2006, 2007). In this approach, we use a Bayesian form of

the multinomial logit model, with a prior that introduces correlations between the parameters for

classes that are nearby in the hierarchy.

Figure 3 illustrates this approach using a simple hierarchical structure. For each branch in the

hierarchy, we define a different set of parameters, φ. Our model classifies objects to one of the end

nodes using an MNL model whose regression coefficients for class j are represented by the sum of

the parameters for all the branches leading to that class. Sharing of common parameters (from

common branches) introduces prior correlations between the parameters of nearby classes in the

hierarchy. We refer to this model as corMNL.

In this section, we extend our nonlinear model to classification problems where classes have a

hierarchical structure. For this purpose, we use a corMNL model, instead of MNL, to capture the

relationship between the covariates, x, and the response variable, y, within each component. The

results is a nonlinear model which takes the hierarchical structure of classes into account. We refer

to this models as dpCorMNL.

Table 4 presents the results for the two linear models (with and without hierarchy-base priors),

and two nonlinear models (with and without hierarchy-based priors). In this table, “parent accu-

racy” refers to the accuracy of models based on the four major structural classes, namely α, β, α/β.

When comparing the hierarchical models to their non-hierarchical counterparts, the advantage of

using the hierarchy is apparent only for some measures (i.e., parent accuracy rate for corMNL,

and the F1 measure for dpCorMNL). As we can see, however, the dpCorMNL model provides a

substantial improvement over corMNL.
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Model Accuracy (%) Parent accuracy (%) F1 (%)

MNL 50.0 76.5 41.2

corMNL 49.5 77.9 41.4

dpMNL 58.6 79.9 53.0

dpCorMNL 59.1 79.4 55.2

Table 4: Comparison of hierarchical models (linear and nonlinear) with non-hierarchical models
(linear and nonlinear) based on protein fold classification data.

Model Accuracy (%) Parent accuracy (%) F1 (%)

NN-OvO 41.4 - -

SVM-OvO 43.2 - -

SVM-uOvO 49.4 - -

SVM-AvA 56.5 - -

MNL 56.5 80.4 51.4

corMNL 59.6 83.3 54.6

dpMNL 60.4 82.0 55.9

dpCorMNL 61.4 83.8 57.8

Table 5: Comparison of hierarchical models (linear and nonlinear) with non-hierarchical models
(linear and nonlinear) based on protein fold classification data. The covariates are obtained from
four different feature sets: composition of amino acids, predicted secondary structure, hydropho-
bicity, and normalized van der Waals volume.

6 Extension to multiple datasets

In order to improve the prediction of folding classes for proteins, Ding and Dubchak (2001) combined

the feature set based on amino acid compositions with 5 other feature sets, which were indepen-

dently extracted based on various physico-chemical and structural properties of amino acids in

the sequence. The additional features predicted secondary structure, hydrophobicity, normalized

varn der Waals volume, polarity, and polarizability. Each data source has 21 covariates. For a

detailed description of these features, see Dubchak et al. (1995). Ding and Dubchak (2001) added

the above 5 datasets sequentially to the amino acid composition dataset. For prediction, they used

a majority voting system, in which the votes obtained from models based on different features sets

are combined, and the class with the most votes is regarded as predicted fold. Their results show

that adding additional feature sets can improve the performance in some cases and can result in

lower performance in some other cases. One main issue with this method is that it gives equal

weights to votes based on different data sources. The underlying assumption, therefore, is that the

quality of predictions is the same for all sources of information. This is, of course, not a realistic

assumption for many real problems. In our previous paper (Shahbaba and Neal, 2006), we provided

a new scheme for combining different sources of information. In this approach, we use separate

scale parameters, ξ, for each data source in order to adjust their relative weights automatically.

This allows the coefficients from different sources of data to have appropriately different variances

in the model.

For models developed by Ding and Dubchak (2001), the highest accuracy rate, 56.5, was achieved

only when they combined the covariates based on the composition of amino acids, secondary struc-
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ture, hydrophobicity, and polarity. We also used these four datasets, and applied our models to

the combined data. We used a different scale parameters, ξ, for each dataset. The results from

our models are presented in Table 5. For comparison, we also present the results obtained by Ding

and Dubchak (2001) based on the same datasets. As we can see, this time, using the hierarchy re-

sults in more substantial improvements. Moreover, nonlinear models provided better performance

compared to their corresponding linear models.

7 Conclusions and future directions

We introduced a new nonlinear classification model, which uses Dirichlet process mixtures to model

the joint distribution of the response variable, y, and the covariates, x, non-parametrically. We

compared our model to several linear and nonlinear alternative methods using both simulated and

real data. We found that when the relationship between y and x is nonlinear, our approach provides

substantial improvement over alternative methods. One advantage of this approach is that if the

relationship is in fact linear, the model can easily reduce to a linear model by using only one

component in the mixture. This way, it avoids overfitting, which is a common challenge in many

nonlinear models.

We believe our model can provide more interpretable results. In many real problems, the iden-

tified components may correspond to a meaningful segmentation of data. Since the relationship

between y and x remains linear in each segment, the results of our model can be expressed as a set

of linear patterns for different segments of data.

As mentioned above, for sampling from the posterior distribution, we used multiple chains which

appeared to be sampling different regions of the posterior space. Ideally, we prefer to have one

chain that can efficiently sample from the whole posterior distribution. In future, we intend to

improve our MCMC sampling. For this purpose, we can use more efficient methods, such as the

“split-merge” approach introduced by Jain and Neal (2007) and the short-cut Metropolis method

introduced by Neal (2005).

In this paper, we considered only continuous covariates. Our approach can be easily extended to

situations where the covariate are categorical. For these problems, we need to replace the normal

distribution in the baseline, G0, with a more appropriate distribution. For example, when the

covariate x is binary, we can assume x ∼ Bernoulli(µ), and specify an appropriate prior distribution

(e.g., Beta distribution) for µ. Alternatively, we can use a continuous latent variable, z, such that

µ = exp(z)/{1+exp(z)}. This way, we can still model the distribution of z as a mixture of normals.

For covariates with multinomial distribution, we can either extend the Bernoulli distribution by

using (µ1, ..., µK), where K is the number of categories in x, or use K continuous latent variables,

z1, ..., zK , and set θj = exp(zj)/
∑K

j′ exp(z′j).

Our model can also be extended to problems where the response variable is not multinomial.

For example, we can use this approach for regression problems with continuous response, y. The

distribution of y can be assumed normal within a component. We model the mean of this normal

distribution as a linear function of covariates for cases that belong to that component. Other types

of response variables (i.e., with Poisson distribution) can be handled in a similar way.

Finally, our approach provides a convenient framework for semi-supervised learning, in which
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both labeled and unlabeled data are used in the learning process. In our approach, unlabeled data

can contribute to modeling the distribution of covariates, x, while only labeled data are used to

identify the dependence between y and x. This is a quite useful approach for problems where the

response variable is known for a limited number of cases, but a large amount of unlabeled data can

be generated. One such problem is classification of web documents. In future, we will examine the

application of our approach for these problems.
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