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Abstract

This thesis responds to the challenges of using a large number, such as thousands, of features

in regression and classification problems. There are two situations where such high dimen-

sional features arise. One is when high dimensional measurements are available, for example,

gene expression data produced by microarray techniques. For computational or other rea-

sons, people may select only a small subset of features when modelling such data, by looking

at how relevant the features are to predicting the response, based on some measure such as

correlation with the response in the training data. Although it is used very commonly, this

procedure will make the response appear more predictable than it actually is. In Chapter 2,

we propose a Bayesian method to avoid this selection bias, with application to naive Bayes

models and mixture models.

High dimensional features also arise when we consider high-order interactions. The num-

ber of parameters will increase exponentially with the order considered. In Chapter 3, we

propose a method for compressing a group of parameters into a single one, by exploiting

the fact that many predictor variables derived from high-order interactions have the same

values for all the training cases. The number of compressed parameters may have converged

before considering the highest possible order. We apply this compression method to logistic

sequence prediction models and logistic classification models. We use both simulated data

and real data to test our methods in both chapters.
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Chapter 1

Introduction

1.1 Classification and Regression

Methods for predicting a response variable y given a set of features x = (x1, . . . , xp) are

needed in numerous scientific and industrial fields. A doctor wants to diagnose whether a

patient has a certain kind of disease from some laboratory measurements on this patient;

a post office wants to use a machine to recognize the digits and characters on envelopes; a

librarian wants to classify documents using a pre-specified list of topics; a businessman wants

to know how likely a person is to be interested in a new product according to this person’s

expenditure history; people want to know the temperature tomorrow given the meteorologic

data in the past; etc. Many such problems can be summarized as finding a predictive function

C linking the features x to a prediction for y:

ŷ = C(x) (1.1)

The choice of function C depends also on the choice of loss function one wishes to use in

making a decision. In scientific discussion, we focus on finding a probabilistic predictive

distribution:

1



2 1 Introduction

P (y | x) (1.2)

Here, P (y | x) could be either a probability density function for continuous y (a regression

model), or a probability mass function for discrete or categorical y (a classification model).

Given a loss function, one can derive the predictive function C from the predictive dis-

tribution P (y | x) by minimizing the average loss in the future. For example, when y is

continuous, if we use a squared loss function L(ŷ, y) = (ŷ − y)2, the best guess of y is the

mean of P (y | x); if we use an absolute loss function L(ŷ, y) = |ŷ − y|, the best guess is the

median of P (y | x); and when y is discrete, if we use 0− 1 loss function L(ŷ, y) = I(ŷ 6= y),

the best guess is the mode of P (y | x).

One approach to finding P (y | x) is to learn from empirical data — data on a num-

ber of subjects that have known values of the response and values of features, denoted by

{(y(1),x(1)), . . . , (y(n),x(n))}, or collectively by (ytrain,xtrain). This is often called “training”

data, and the subjects are called “training” cases, as we are going to use these data to “train”

an initially “unskilled” predictive model, as discussed later. In contrast, a subject whose re-

sponse and features are denoted by (y∗,x∗), for which we need to predict the response, is

called a “test” case, because we can use the prediction result to test how good a predictive

model is if we are later given the true y∗.

There are many methods to learn from the training data (Hastie, Tibshirani and Fried-

man 2001 and Bishop 2006). One may estimate P (y∗ | x∗) using the empirical distribution of

the responses in the neighbourhood of x∗ in some metric, as in the k-nearest-neighbourhood

method. Such methods are called nonparametric methods. In this thesis, we consider para-

metric methods, in which we use a closed-form function with unknown parameters to model

the data. Once the parameters are inferred from the training data we can discard the train-

ing data because we only need the parameters of the “trained” model for making predictions

on test cases.
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One class of parametric methods, called conditional modelling methods, start by defining

P (y | x) as a function involving some unknown parameters, denoted by θ. These parameters

will be inferred from training data. For continuous y, the simplest and most commonly used

form for P (y | x) is a Gaussian model:

P (y | x,β, σ) =
1√
2π

exp

(

−(y − f(x,β))2

2 σ2

)

(1.3)

For a discrete y that takes K possible values 0, . . . , K − 1, one may use a logistic form for

P (y | x):

P (y = k | x, θ) =
exp(fk(x,βk))

∑K−1
j=0 exp(fj(x,βj))

(1.4)

The function f(x,β) or functions fj(x,βj) link x to y. They are often linear functions of

x, but may be also nonlinear functions of x defined, for example, by multilayer perceptron

networks. Our work in Chapter 3 uses linear logistic models.

Another class of methods model the joint distribution of y and x by some formula with

unknown parameters θ, written as P (y,x | θ). The conditional probability P (y | x, θ) can

be found by:

P (y | x, θ) =
P (y,x | θ)

P (x | θ)
(1.5)

Examples of such P (y,x, θ) include naive Bayes models, mixture models, Bayesian networks,

and Markov random fields, etc., all of which use conditional independency in specifying

P (y,x | θ). For example naive Bayes models assume all features x are independent given y.

Our work in Chapter 2 uses naive Bayes models and mixture models.

There are two generally applicable approaches for inferring θ from the training data. One

is to estimate θ using a single value, θ̂, that maximizes the likelihood function or a penalized
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likelihood function, i.e., the value that best fits the training data subject to some constraint.

This single estimate will be plugged in to P (y | x, θ) or P (y,x | θ) to obtain the predictive

distribution P (y∗ | x∗, θ̂) for a test case.

Alternatively, we can use a Bayesian approach, in which we first define a prior distribu-

tion, P (θ), for θ, which reflects our “rough” knowledge about θ before seeing the data, and

then update our knowledge about θ after we see the data, still expressed with a probability

distribution, using Bayes formula:

P (θ | ytrain,xtrain) =
P (ytrain,xtrain | θ)P (θ)

P (ytrain,xtrain)
(1.6)

P (θ | ytrain,xtrain) is called the posterior distribution of θ. The joint distribution of a test

case (y∗,x∗) given the training data (ytrain,xtrain) is found by integrating over θ with respect

to the posterior distribution:

P (y∗,x∗ | ytrain,xtrain) =

∫

P (y∗,x∗ | ytrain,xtrain, θ)P (θ | ytrain,xtrain) dθ (1.7)

The predictive distribution can then be found as P (y∗,x∗ | ytrain,xtrain)/P (x∗ | ytrain,xtrain),

which will be used to make predictions on test cases in conjunction with our loss function.

1.2 Challenges of Using High Dimensional Features

In many regression and classification problems, a large number of features are available for

possible use. DNA microarray techniques can simultaneously measure the expression levels

of thousands of genes (Alon et.al. 1999, Khan et.al. 2001); the HIRIS instrument for the

Earth Observing System generates image data in 192 spectral bands simultaneously (Lee

and Landgrebe et.al. 1993); one may consider numerous high-order interactions of discrete

features; etc.
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There are several non-statistical difficulties in using high-dimensional features, depend-

ing on the purpose the data is used for. The primary one is computation time. Models for

high dimensional data will require high dimensional parameters. Consequently, the time for

training the model and making predictions on test cases may be intolerable. For example, a

speech recognition program or data compression program must be able to give out the pre-

diction very quickly to be practically useful. Also, in some cases, measuring high dimensional

features takes substantially more time or money.

Serious statistical problems also arise with high dimensional features. When the number

of features is larger than the number of training cases, the usual estimate of the covariance

matrix of features is singular, and therefore can not be used to compute the density function.

Regularization methods that shrink the estimation to a diagonal matrix have been proposed

in the literature (Friedman 1998, Tadjudin and Landgrebe 1998, 1999). Such methods usually

need to adjust some parameters that control the degree of shrinkage to a diagonal matrix,

which may be difficult to determine. Another aspect of this problem is that even a simple

model, such as a linear model, will overfit data with high dimensional features. Linear logistic

models with the coefficients estimated by the maximum likelihood method will have some

coefficients equal to ∞; the solution is also not unique. This is because the training cases can

be divided by some hyperplanes in the space of features into groups such that all the cases

with the same response are in a group; indeed, there are infinitely many such hyperplanes.

The resulting classification rule works perfectly on the training data but may perform poorly

on the test data. Overfitting problems usually arises because one uses more complex models

than the data can support. For example, when one uses a polynomial function of degree n

to fit the relationship between x and y in n data points (y(i), x(i)), there are infinitely many

such polynomial functions that go exactly through each of these n points.

A sophisticated Bayesian method can overcome the overfitting problem by using a prior

that favours simpler models. But unless one can analytically integrate with respect to the
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posterior distribution, implementating such a Bayesian method by Markov chain sampling is

difficult. With more parameters, a Markov chain sampler will take longer for each iteration

and require more memory. It may need more iterations to converge, or get trapped more

easily in local modes. Also, with high dimensional features, it is harder to come up with a

prior that reflects all of our knowledge of the problem.

1.3 Two Problems Addressed in this Thesis

For the above reasons, people often use some methods to reduce the dimension of features

before applying regression or classification methods. However, a simple implementation of

such a “preprocessing” procedure may be invalid. For example, we may first select a small

set of features that are most correlated with the response in the training data, then use

these features to construct a predictive distribution. This procedure will make the response

variable appear more predictable than it actually is. This overconfidence may be more

pronounced when there are more features available, as more actually useless features will

by chance pass the selection process, especially when very few useful features exist. In

Chapter 2, we propose a method to avoid this problem with feature selection in a Bayesian

framework. In constructing the posterior distribution of parameters, we condition not only

on the retained features, but also on the information that a number of features are discarded

because of their weak correlations with the response. The key point in our solution is that

we need only calculate the probability that one feature is discarded, then raise it to the

power of the number of discarded features. We therefore can save much computation time

by selecting only a very small number of features for use, and at the same time make well-

calibrated predictions for test cases. We apply this method to naive Bayes models and

mixture models for binary data.

A huge number of parameters will arise when we consider very high order interactions of
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discrete features. But many interaction patterns are expressed by the same training cases.

In Chapter 3, we use this fact to reduce the number of parameters by effectively compressing

a group of parameters into a single one. After compressing the parameters, there are many

fewer parameters involved in the Markov chain sampling. The original parameters can later

be recovered efficiently by sampling from a splitting distribution. We can therefore consider

very high order interactions in a reasonable amount of time. We apply this compression

method to logistic sequence prediction models and logistic classification models.

1.4 Comments on the Bayesian Approach

The Bayesian approach is sometimes criticized for its use of prior distributions. Many people

view the choice of prior as arbitrary because it is subjective. The prior is the distribution

of θ that generates, through a defined sampling distribution, the class of data sets that will

enter our analysis. Thus, there is only one prior that accurately defines the characteristics

of the class of data sets, which may be described in another way, such as in words. Different

individuals may define different classes of data sets. The choice of prior is therefore subjec-

tive, but not arbitrary, since we may indeed decide that a prior distribution is wrong if the

data sets it generates contradict our beliefs. Typically we choose a diffuse prior to include

a wide class of data sets, but de-emphasize some data sets we believe less likely to appear

in our analysis, for example a data set generated by a linear logistic model with coefficient

equal to 10000 for a binary feature. This distribution is therefore also phrased as expressing

our prior belief, or our “rough” knowledge about which θ may have generated our data set.

There is usually useful prior information available for a problem before seeing any data set,

such as relationships between the parameters (or data). For example, a set of body features

of a human should be closer to those of a monkey than to other animals. A sophisticated prior

distribution can be used to capture such relationships. For example, we can assign the two



8 1 Introduction

groups of parameters, which are used to define the distribution of body features of a human

and a monkey, a joint prior distribution in which they are positively correlated (Gelman,

Bois and Jiang 1996). We usually construct such joint distributions by introducing some

extra parameters that are shared by a group of parameters, which may also have meaningful

interpretations. One way is to define the priors of the parameters of likelihood function in

terms of some unknown hyperparameters, which is again given a higher level distribution. For

example, in Automatic Relevance Determination (ARD) priors for neural network regression

(Neal 1996), all the coefficients related to a feature are controlled by a common standard

deviation. Such priors enable the models to decide whether a feature is useful automatically,

through adjusting the posterior distribution of the common standard deviation. Similarly,

in the priors for the models in Chapter 2 we use a parameter α to control the overall degree

of relationship between the features and response. Our method for avoiding the bias from

feature selection has the effect of adjusting the posterior distribution of α to be closer to the

right one (as would be obtained using the complete data), by conditioning on all information

known to us, both the retained features and information about the feature selection process.

Another way of introducing dependency is to express a group of parameters as the functions

of a group of “brick” parameters. For example, in Chapter 3, the regression coefficients

for the highest order interaction patterns are expressed as sums of parameters representing

the effects of lower order interaction patterns. Such priors enable the models to choose the

orders automatically.

Once we have assigned an appropriate prior distribution for a problem, all forms of

inference for unknown quantities, including the unknown parameters, can be carried out very

straightforwardly in theory using only the rules of probability, since the result of inference

is also expressed by a probability distribution. These predictions are found by averaging

over all sets of values of θ that are plausible in light of the training data. Compared with

non-Bayesian methods, which use only a single set of parameters, the Bayesian approach has
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the following advantages from a practical viewpoint.

First, the prediction is automatically accompanied by information on its uncertainty in

making predictions, since the prediction is expressed by a probability distribution.

Second, Bayesian prediction may be better than prediction based on only a single set of

parameters. If the set of parameters that best explains the training data, such the MLE,

is not the true set of parameters that generates the training data, we still have the chance

to make good predictions, since the true set of parameters should be plausible given the

training data and therefore will be considered as well in Bayesian prediction.

Third, sophisticated Bayesian models, as described earlier, will self-adjust the complexity

of a model in light of the data. We can define a model through a diffuse prior that can cover

a wide class of data sets, from those with a low level of complexity to those with a high

level of complexity. If the training data does not favour the high complexity, the posterior

distribution will choose to use the simple model. In theory we do not need to change

the complexity of a model according to the properties of the data, such as the number of

observations. The overfitting problem in applying a complex model to a data set of small

size is therefore overcome in Bayesian framework. Although more complex models may make

the computation harder, Bayesian methods are, at least, much less sensitive to the choice of

model complexity level than non-Bayesian methods.

Bayesian inference, however, is difficult to carry out, primarily for computational reasons.

The posterior distribution is often on a high dimensional space, often takes a very complicated

form, and may have a lot of isolated modes. Markov chain Monte Carlo (MCMC) methods

(Neal 1993, Liu 2001 and the references therein) are so far the only feasible methods to draw

samples from a posterior distribution (Tierney 1994). In the next section, we will briefly

introduce these methods. However, for naive Bayes models in Chapter 2 we do not use

MCMC, due to the simplicity of naive Bayes models.
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1.5 Markov Chain Monte Carlo Methods

We can simulate a Markov chain governed by a transition distribution T (θ′ | θ) to draw

samples from a distribution π(θ), where θ ∈ S, if T leaves π invariant:

∫

S

π(θ)T (θ′ | θ) dθ = π(θ′) (1.8)

and satisfies the following conditions: the Markov chain should be aperiodic, i.e., it does

not explore the space in a cyclic way, and the Markov chain should be irreducible, i.e., the

Markov chain can explore the whole space starting from any point. Given these conditions,

it can be shown there is only one distribution π satisfying the invariance condition (1.8) for

a Markov chain transition T if there is one. (The condition of aperiodicity is not actually

required for Monte Carlo estimation, but it is convenient in practice if a Markov chain is

aperiodic, since we have more freedom in choosing the iterations for making Monte Carlo

estimation. And it is obviously required to ensure that the result in (1.9) is true.)

Let us denote a Markov chain by θ(0), θ(1), . . . . (Roberts and Rosenthal 2004) shows

that if a Markov chain transition T satisfies all the above conditions with respect to π, then

starting from any point θ0 for θ(0), the distribution of θ(n) will converge to π:

lim
n−>∞

P (θ(n) = θ | θ(0) = θ0) = π(θ), for any θ, θ0 ∈ S (1.9)

In words, after we run a Markov chain sufficiently long, the distribution of θ(n) (regardless

the starting point) will be close to the target distribution π(θ) in some metric (Rosenthal

1995 and the references therein). We can therefore use the states afterward as samples from

π(θ) (though correlated) for making Monte Carlo estimations. It is tremendously difficult

to determine in advance how long we should run for an arbitrary Markov chain, though we

can do this for some types of Markov chains (Rosenthal 1995). In practice we check the
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convergence by running multiple chains starting from different points and see whether they

have mixed at a certain time (see for example Cowles and Carlin 1996, and the references

therein).

It is usually not difficult to construct a Markov chain transition T that satisfies the

invariance condition for a desired distribution π and the other two conditions as well, based

on the following facts. First, one can show that a Markov chain transition T leaves π invariant

if it is reversible with respect to π:

π(θ)T (θ′ | θ) = π(θ′)T (θ | θ′), for any θ′, θ ∈ S (1.10)

It therefore suffices to devise a Markov chain that is reversible with respect to π. Second,

applying a series of Markov chain transition Ti that have been shown to leave π invariant

will also leave π invariant. Also, applying a series of appropriate Markov chain transition Ti

that explores only a subset of S can explore the whole space, S.

Gibbs sampling method (Geman and Geman 1984, and Gelfand and Smith 1990) and

the Metropolis-Hastings method (Metropolis et. al. 1953, and Hastings 1970) are two basic

methods to devise a Markov chain transition that leaves π invariant. We usually use a

combination of them to devise a Markov chain transition satisfying the above conditions for

a complicated target distribution π.

Let us write θ = (θ1, . . . , θp). Gibbs sampling defines the transition from θ(t−1) to θ(t) as

follows:
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Draw θ
(t)
1 from π(θ1 | θ(t−1)

2 , . . . , θ
(t−1)
p )

Draw θ
(t)
2 from π(θ2 | θ(t)

1 , θ
(t−1)
3 , . . . , θ

(t−1)
p )

...

Draw θ
(t)
i from π(θi | θ(t)

1 , . . . , θ
(t)
i , θ

(t−1)
i+1 , . . . , θ

(t−1)
p )

...

Draw θ
(t)
p from π(θp | θ(t)

1 , . . . , θ
(t)
p−1)

The order of updating θi can be any permutation of 1, . . . , p. One can show each updating

of θi is reversible with respect to π(θ), and a complete updating of all θi therefore leaves

π(θ) invariant. Sampling from the conditional distribution for θi can also be replaced with

any transition that leaves the conditional distribution invariant, for example, a Metropolis-

Hastings transition as described next.

The Metropolis-Hastings method first samples from a proposal distribution T̂ (θ∗ | θ(t−1))

to propose a candidate θ∗, then draws a random number U from the uniform distribution

over (0, 1). If

U < min

(

1,
π(θ∗) T̂ (θ(t−1) | θ∗)

π(θ(t−1)) T̂ (θ∗ | θ(t−1))

)

, (1.11)

we let θ(t) = θ∗, otherwise we let θ(t) = θ(t−1). One can show that such a transition is

reversible with respect to π, and hence leave π invariant.

1.6 Outline of the Remainder of the Thesis

We will discuss in detail our method for avoiding bias from feature selection in Chapter

2, with application to naive Bayes models and mixture models. In Chapter 3 we discuss

how to compress the parameters in Bayesian regression and classification models with high-

order interactions, with application to logistic sequence prediction models and to logistic

classification models. We conclude separately at the end of each chapter.



Chapter 2

Avoiding Bias from Feature Selection

Abstract. For many classification and regression problems, a large number of features are

available for possible use — this is typical of DNA microarray data on gene expression, for

example. Often, for computational or other reasons, only a small subset of these features

are selected for use in a model, based on some simple measure such as correlation with

the response variable. This procedure may introduce an optimistic bias, however, in which

the response variable appears to be more predictable than it actually is, because the high

correlation of the selected features with the response may be partly or wholly due to chance.

We show how this bias can be avoided when using a Bayesian model for the joint distribution

of features and response. The crucial insight is that even if we forget the exact values of the

unselected features, we should retain, and condition on, the knowledge that their correlation

with the response was too small for them to be selected. In this paper we describe how this

idea can be implemented for “naive Bayes” and mixture models of binary data. Experiments

with simulated data confirm that this method avoids bias due to feature selection. We also

apply the naive Bayes model to subsets of data relating gene expression to colon cancer, and

find that correcting for bias from feature selection does improve predictive performance.

1Part of this Chapter appeared as a technical report coauthored with Jianguo Zhang and Radford Neal.

13
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2.1 Introduction

Regression and classification problems that have a large number of available “features” (also

known as “inputs”, “covariates”, or “predictor variables”) are becoming increasingly com-

mon. Such problems arise in many application areas. Data on the expression levels of tens

of thousands of genes can now be obtained using DNA microarrays, and used for tasks such

as classifying tumors. Document analysis may be based on counts of how often each word in

a large dictionary occurs in each document. Commercial databases may contain hundreds

of features describing each customer.

Using all the features available is often infeasible. Using too many features can result in

“overfitting” when simple statistical methods such as maximum likelihood are used, with the

consequence that poor predictions are made for the response variable (e.g., the class) in new

items. More sophisticated Bayesian methods can avoid such statistical problems, but using

a large number of features may still be undesirable. We will focus primarily on situations

where the computational cost of looking at all features is too burdensome. Another issue

in some applications is that using a model that looks at all features will require measuring

all these features when making predictions for future items, which may sometimes be costly.

In some situations, models using few features may be preferred because they are easier to

interpret.

For the above reasons, modellers often use only a subset of features, chosen by some

simple indicator of how useful they might be in predicting the response variable — see, for

example, the papers in (Guyon, et al. 2006). For both regression problems with a real-valued

response variable and classification problems with a binary (0/1) class variable, one suitable

measure of how useful a feature may be is the sample correlation of the feature with the

response. If the absolute value of this sample correlation is small, we might decide to omit

the feature from our model. This criterion is not perfect, of course — it may result in a

relevant feature being ignored if its relationship with the response is non-linear, and it may
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result in many redundant features being retained even when they all contain essentially the

same information. Sample correlation is easily computed, however, and hence is an attractive

criterion for screening a large number of features.

Unfortunately, a model that uses only a subset of features, selected based on their high

correlation with the response, will be optimistically biased — i.e., predictions made using the

model will (on average) be more confident than is actually warranted. For example, we might

find that the model predicts that certain items belong to class 1 with probability 90%, when in

fact only 70% of these items are in class 1. In a situation where the class is actually completely

unpredictable from the features, a model using a subset of features that purely by chance had

high sample correlation with the class may produce highly confident predictions that have

less actual chance of being correct than just guessing the most common class. The feature

selection bias has also been noticed in the literature by a few researchers, see for example, the

papers (Ambroise and McLachlan 2002), (Lecocke and Hess 2004), (Singhi and Liu 2006), and

(Raudys, Baumgartner and Somorjai 2005). They pointed out that if the feature selection

is performed externally to the cross-validation assessment (ie, cross-validation is applied to

a subset of features selected in advance based on all observations), the classification error

rate will be highly underestimated (could be 0%). It is therefore suggested that feature

selection should be performed internally to the cross-validation procedure, ie, re-selecting

features whenever the training set and test set are changed. This modified cross-validation

procedure avoids underestimating the error rate and assesses properly the predictive method

plus the feature selection method. However, it does not provide a scheme for constructing

a better predictive method that can give out well-calibrated predictive probabilities for test

cases. We propose a Bayesian solution to this problem.

This optimistic bias comes from ignoring a basic principle of Bayesian inference — that

we should base our conclusions on probabilities that are conditional on all the available infor-

mation. If we have an appropriate model, this principle would lead us to use all the features.
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This would produce the best possible predictive performance. However, we assume here

that computational or other pragmatic issues make using all features unattractive. When we

therefore choose to “forget” some features, we can nevertheless still retain the information

about how we selected the subset of features that we use in the model. Properly conditioning

on this information when forming the posterior distribution eliminates the bias from feature

selection, producing predictions that are as good as possible given the information in the

selected features, without the overconfidence that comes from ignoring the feature selection

process.

We can use the information from feature selection procedure only when we model the

features and the response jointly. We show in this Chapter this information can be easily

incorporated into our inference in a Bayesian framework. We particularly apply this method

to naive Bayes models and mixture models.

2.2 Our Method for Avoiding Selection Bias

Suppose we wish to predict a response variable, y, based on the information in the numerical

features x1, . . . , xp, which we sometimes write as a vector, x. Our method is applicable both

when y is a binary (0/1) class indicator, as is the case for the naive Bayes models discussed

later, and when y is real-valued. We assume that we have complete data on n “training”

cases, for which the responses are y(1), . . . , y(n) (collectively written as ytrain) and the feature

vectors are x(1), . . . ,x(n) (collectively written as xtrain). (Note that when y, x, or xt are

used without a superscript, they will refer to some unspecified case.) We wish to predict

the response for one or more “test” cases, for which we know only the feature vector. Our

predictions will take the form of a distribution for y, rather than just a single-valued guess.

We are interested in problems where the number of features, p, is quite big — perhaps

as large as ten or a hundred thousand — and accordingly (for pragmatic reasons) we intend
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to select a subset of features based on the absolute value of each feature’s sample correlation

with the response. The sample correlation of the response with feature t is defined as follows

(or as zero if the denominator below is zero):

COR(ytrain, xtrain

t ) =

n
∑

i=1

(

y(i) − ȳ
) (

x
(i)
t − x̄t

)

√

n
∑

i=1

(

y(i) − ȳ
)2
√

n
∑

i=1

(

x
(i)
t − x̄t

)2
(2.1)

where ȳ = 1
n

n
∑

i=1

y(i) and x̄t = 1
n

n
∑

i=1

x
(i)
t . The numerator can be simplified to

n
∑

i=1

(

y(i)− ȳ
)

x
(i)
t .

Although our interest is only in predicting the response, we assume that we have a

model for the joint distribution of the response together with all the features. From such

a joint distribution, with probability or density function P (y, x1, . . . , xp), we can obtain the

conditional distribution for y given any subset of features, for instance P (y | x1, . . . , xk), with

k < p. This is the distribution we need in order to make predictions based on this subset.

Note that selecting a subset of features makes sense only when the omitted features can be

regarded as random, with some well-defined distribution given the features that are retained,

since such a distribution is essential for these predictions to be meaningful. This can be seen

from the following expression:

P (y | x1, . . . , xk) =

∫

· · ·
∫

P (y | x1, . . . , xk, xk+1, . . . , xp) ·

P (xk+1, . . . , xp | x1, . . . , xk) dxk+1 · · ·dxp (2.2)

If P (xk+1, . . . , xp | x1, . . . , xk) does not exist in any meaningful sense — as would be the case,

for example, if the data were collected by an experimenter who just decided arbitrarily what

to set xk+1, . . . , xp to — then P (y | x1, . . . , xk) will also have no meaning.

Consequently, features that cannot usefully be regarded as random should always be

retained. Our general method can accommodate such features, provided we use a model

for the joint distribution of the response together with the random features, conditional on
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given values for the non-random features. However, for simplicity, we will ignore the possible

presence of non-random features in this paper.

We will assume that a subset of features is selected by fixing a threshold, γ, for the

absolute value of the correlation of a selected feature with the response. We then omit

feature t from the feature subset if |COR(ytrain, xtrain
t )| ≤ γ, retaining those features with a

greater degree of correlation. Another possible procedure is to fix the number of features, k,

that we wish to retain, and then choose the k features whose correlation with the response

is greatest in absolute value, breaking any tie at random. If s is the retained feature with

the weakest correlation with the response, we can set γ to |COR(ytrain, xtrain
s )|, and we will

again know that if t is any omitted feature, |COR(ytrain, xtrain
t )| ≤ γ. If either the response

or the features have continuous distributions, exact equality of sample correlations will have

probability zero, and consequently this situation can be treated as equivalent to one in which

we fixed γ rather than k. If sample correlations for different features can be exactly equal,

we should theoretically make use of the information that any possible tie was broken the

way that it was, but ignoring this subtlety is unlikely to have any practical effect, since ties

are still likely to be rare.

Regardless of the exact procedure used to select features, we will denote the number of

features retained by k, we will renumber the features so that the subset of retained features

is x1, . . . , xk, and we will assume we know that |COR(ytrain, xtrain
t )| ≤ γ for t = k+1, . . . , p.

We can now state the basic principle behind our bias-avoidance method: When forming

the posterior distribution for parameters of the model using a subset of features, we should

condition not only on the values in the training set of the response and of the k features we

retained, but also on the fact that the other p−k features have sample correlation with the

response that is less than γ in absolute value. That is, the posterior distribution should be

conditional on the following information:

ytrain, xtrain

1:k , |COR(ytrain, xtrain

t )| ≤ γ for t = k+1, . . . , p (2.3)
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where xtrain
1:k = (xtrain

1 , . . . , xtrain
k ).

We claim that this procedure of conditioning on the fact that selection occurred will

eliminate the bias from feature selection. Here, “bias” does not refer to estimates for model

parameters, but rather to our estimate of how well we can predict responses in test cases.

Bias in this respect is referred to as a lack of “calibration” — that is, the predictive proba-

bilities do not represent the actual chances of events (Dawid 1982). If the model describes

the actual data generation mechanism, and the actual values of the model parameters are

indeed randomly chosen according to our prior, Bayesian inference always produces well-

calibrated results, on average with respect to the data and model parameters generated from

the Bayesian model. The proof that the Bayesian inference is well-calibrated is given in the

Appendix 1 to this Chapter.

In justifying our claim that this procedure avoids selection bias (ie, is well-calibrated),

we will assume that our model for the joint distribution of the response and all features,

and the prior we chose for it, are appropriate for the problem, and that we would therefore

not see bias if we predicted the response using all the features. Now, imagine that rather

than selecting a subset of features ourselves, after seeing all the data, we instead set up

an automatic mechanism to do so, providing it with the value of γ to use as a threshold.

This mechanism, which has access to all the data, will compute the sample correlations of

all the features with the response, select the subset of features by comparing these sample

correlations with γ, and then erase the values of the omitted features, delivering to us only the

identities of the selected features and their values in the training cases. If we now condition

on all the information that we know, but not on the information that was available to the

selection mechanism but not to us, we will obtain unbiased inferences. The information we

know is just that of (2.3) above.

The class of models we will consider in detail may include a vector of latent variables, z,

for each case. Model parameters θ1, . . . , θp (collectively denoted θ) are associated with the
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Figure 2.1: A directed graphical model for the general class of models we are considering.
Circles represent variables, parameters, or hyperparameters. Arrows represent possible direct
dependencies (not all of which are necessarily present in all models in this class). The
rectangles enclose objects that are repeated; an object in both rectangles is repeated in both
dimensions. The case index, i, is shown as ranging over the n training cases, but test cases
(not shown) belong in this rectangle as well. This diagram portrays a model where cases are
independent given α and θ, though this is not essential.

p features; other parameters or hyperparameters, α, not associated with particular features,

may also be present. Conditional on θ and α, the different cases may be independent,

though this is not essential for our method. Our method does rely on the values of different

features (in all cases) being independent, conditional on θ, α, ytrain, and ztrain. Also, in the

prior distribution for the parameters, θ1, . . . , θp are assumed to be conditionally independent

given α. These conditional independence assumptions are depicted graphically in Figure 2.1.

If we retain all features, our prediction for the response, y∗, in a test case for which we

know the features, x∗ = (x∗1, . . . , x
∗
p), can be found from the joint predictive distribution for

y∗ and x∗ given the data for all training cases, written as ytrain and xtrain:

P (y∗ |x∗, ytrain, xtrain) =
P (y∗, x∗ | ytrain, xtrain)

P (x∗ | ytrain, xtrain)
(2.4)

=

∫ ∫

P (y∗, x∗ |α, θ)P (α, θ | ytrain, xtrain) dαdθ
∫ ∫

P (x∗ |α, θ)P (α, θ | ytrain, xtrain) dα dθ
(2.5)

The posterior, P (α, θ | ytrain, xtrain), is proportional to the product of the prior and the like-
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lihood:

P (α, θ | ytrain, xtrain) ∝ P (α, θ) P (ytrain, xtrain |α, θ) (2.6)

∝ P (α)

p
∏

t=1

P (θt |α)

n
∏

i=1

P (y(i), x(i) |α, θ) (2.7)

where the second expression makes use of the conditional independence properties of the

model.

When we use a subset of only k features, the predictive distribution for a test case will

be

P (y∗ |x∗
1:k, y

train, xtrain

1:k , S)

=

∫ ∫

P (y∗, x∗
1:k |α, θ1:k)P (α, θ1:k | ytrain, xtrain

1:k , S) dα dθ1:k
∫ ∫

P (x∗
1:k |α, θ1:k)P (α, θ1:k | ytrain, xtrain

1:k , S) dα dθ1:k

(2.8)

where S represents the information regarding selection from (2.3), namely |COR(ytrain, xtrain
t )| ≤

γ for t = k+1, . . . , p. The posterior distribution for α and θ1:k needed for this prediction can

be written as follows, in terms of an integral (or sum) over the values of the latent variables,

ztrain:

P (α, θ1:k | ytrain, xtrain

1:k , S)

∝
∫

P (α, θ1:k, ztrain | ytrain, xtrain

1:k , S) dztrain (2.9)

∝
∫

P (α, θ1:k) P (ztrain, ytrain, xtrain

1:k |α, θ1:k) ·

P (S |α, θ1:k, ztrain, ytrain, xtrain

1:k ) dztrain (2.10)

∝
∫

P (α, θ1:k) P (ztrain, ytrain, xtrain

1:k |α, θ1:k) P (S |α, ztrain, ytrain) dztrain (2.11)

Here again, the conditional independence properties of the model justify removing the con-
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ditioning on θ1:k and xtrain
1:k in the last factor.

Computation of P (S |α, ztrain, ytrain), which adjusts the likelihood to account for feature

selection, is crucial to applying our method. Two facts greatly ease this computation. First,

the xt are conditionally independent given α, z, and y, which allows us to write this as a

product of factors pertaining to the various omitted features. Second, these factors are all

the same, since nothing distinguishes one omitted feature from another. Accordingly,

P (S |α, ztrain, ytrain) =

p
∏

t=k+1

P
(

|COR(ytrain, xtrain

t )| ≤ γ |α, ztrain, ytrain) (2.12)

=
[

P
(

|COR(ytrain, xtrain

t )| ≤ γ |α, ztrain, ytrain)
]p−k

(2.13)

where in the second expression, t represents any of the omitted features. Since the time

needed to compute the adjustment factor does not depend on the number of omitted features,

we may hope to save a large amount of computation time by omitting many features.

Computing the single factor we do need is not trivial, however, since it involves integrals

over θt and xtrain
t . We can write

P
(

|COR(ytrain, xtrain

t )| ≤ γ |α, ztrain, ytrain)

=

∫

P (θt |α)P
(

|COR(ytrain, xtrain

t )| ≤ γ |α, θt, ztrain, ytrain) dθt (2.14)

Devising ways of efficiently performing this integral over θt and the integral over xtrain
t im-

plicit in the probability statement occurring in the integrand will be the main topic of our

discussion of specific models below.

Once we have a way of computing this factor, we can use standard Markov chain Monte

Carlo (MCMC) methods to sample from P (α, θ1:k, ztrain | ytrain, xtrain
1:k , S). The resulting sam-

ple of values for α and θ1:k can be used to make predictions using equation (2.8), by ap-

proximating the integrals in the numerator and denominator by Monte Carlo estimates. For
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the naive Bayes model we will discuss in Section 2.3, however, Monte Carlo methods are

unnecessary — a combination of analytical integration and numerical quadrature is faster.

2.3 Application to Bayesian Naive Bayes Models

In this chapter we show how to apply the bias correction method to Bayesian naive Bayes

models in which both the features and the response are binary. Binary features are natural

for some problems (e.g., test answers that are either correct or incorrect), or may result

from thresholding real-valued features. Such thresholding can sometimes be beneficial — in

a document classification problem, for example, whether or not a word is used at all may

be more relevant to the class of the document than how many times it is used. Naive Bayes

models assume that features are independent given the response. This assumption is often

incorrect, but such simple naive Bayes models have nevertheless been found to work well for

many practical problems (see for example Li and Jain 1998, Vaithyanathan, Mao, and Dom

2000, Eyheramendy, Lewis, and Madigan 2003). Here we show how to correct for selection

bias in binary naive Bayes models, whose simplicity allows the required adjustment factor to

be computed very quickly. Simulations reported in Section 2.3.5 show that substantial bias

can be present with the uncorrected method, and that it is indeed corrected by conditioning

on the fact that feature selection occurred. We then apply the method to real data on gene

expression relating to colon cancer, and again find that our bias correction method improves

predictions.

2.3.1 Definition of the Binary Naive Bayes Models

Let x(i) = (x
(i)
1 , · · · , x

(i)
p ) be the vector of p binary features for case i, and let y(i) be the binary

response for case i, indicating the class. For example, y(i) = 1 might indicates that cancer

is present for patient i, and y(i) = 0 indicate that cancer is not present. Cases are assumed
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Figure 2.2: A picture of Bayesian naive Bayes models.

to be independent given the values of the model parameters (ie, exchangeable a priori).

The probability that y = 1 in a case is given by the parameter ψ. Conditional on the class

y in some case (and on the model parameters), the features x1, . . . , xp are assumed to be

independent, and to have Bernoulli distributions with parameters φy,1, . . . , φy,p, collectively

written as φy, with φ = (φ0,φ1) representing all such parameters. Figure 2.2 displays the

models. Formally, the data is modeled as

y(i) | ψ ∼ Bernoulli (ψ), for i = 1, . . . , n (2.15)

x
(i)
j | y(i), φ ∼ Bernoulli (φy(i),j), for i = 1, . . . , n and j = 1, . . . , p (2.16)

We use a hierarchical prior that expresses the possibility that some features may have

almost the same distribution in the two classes. In detail, the prior has the following form:
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ψ ∼ Beta (f1, f0) (2.17)

α ∼ Inverse-Gamma(a, b) (2.18)

θ1, . . . , θp IID

∼ Uniform(0, 1) (2.19)

φ0,j, φ1,j | α, θj IID

∼ Beta (αθj, α(1−θj)), for j = 1, . . . , p (2.20)

The hyperparameters θ = (θ1, . . . , θp) are used to introduce dependence between φ0,j

and φ1,j , with α controlling the degree of dependence. Features for which φ0,j and φ1,j differ

greatly are more relevant to predicting the response. When α is small, the variance of the

Beta distribution in (2.20), which is θj (1−θj) / (α+1), is large, and many features are likely to

have predictive power, whereas when α is large, it is likely that most features will be of little

use in predicting the response, since φ0,j and φ1,j are likely to be almost equal. We chose

an Inverse-Gamma prior for α (with density function proportional to α−(1+a) exp(−b/α))

because it has a heavy upward tail, allowing for the possibility that α is large. Our method

of correcting selection bias will have the effect of modifying the likelihood in a way that

favors larger values for α than would result from ignoring the effect of selection.

2.3.2 Integrating Away ψ and φ

Although the above model is defined with ψ and φ parameters for better conceptual under-

standing, computations are simplified by integrating them away analytically.

Integrating away ψ, the joint probability of ytrain = (y(1), . . . , y(n)) is as follows, where

I( · ) is the indicator function, equal to 1 if the enclosed condition is true and 0 if it is false:

P (ytrain) =

∫ 1

0

Γ(f0 + f1)

Γ(f0)Γ(f1)
ψf1(1 − ψ)f0 ψ

n
P

i=1
I(y(i)=1)

(1− ψ)

n
P

i=1
I(y(i)=0)

dψ (2.21)

= U
(

f1, f0,
n
∑

i=1

I
(

y(i) = 1
)

,
n
∑

i=1

I
(

y(i) = 0
)

)

(2.22)
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The function U is defined as

U(f1, f0, n1, n0) =
Γ(f0 + f1)

Γ(f0)Γ(f1)

Γ(f0 + n0)Γ(f1 + n1)

Γ(f0 + f1 + n0 + n1)
(2.23)

=

n0
∏

`=1

(f0 + `− 1)
n1
∏

`=1

(f1 + `− 1)

n0+n1
∏

`=1

(f0 + f1 + `− 1)

(2.24)

The products above have the value one when the upper limits of n0 or n1 are zero. The joint

probability of ytrain and the response, y∗, for a test case is similar:

P (ytrain, y∗)

= U
(

f1, f0,
n
∑

i=1

I
(

y(i) = 1
)

+ I(y∗ = 1),
n
∑

i=1

I
(

y(i) = 0
)

+ I(y∗ = 0)
)

(2.25)

Dividing P (ytrain, y∗) by P (ytrain) gives

P (y∗ | ytrain) = Bernoulli (y∗; ψ̂) (2.26)

Here, Bernoulli (y;ψ) = ψy (1 − ψ)1−y and ψ̂ = (f1 + N1) / (f0 + f1 + n), with Ny =
n
∑

`=1

I(y(`) = y). Note that ψ̂ is just the posterior mean of ψ based on y(1), . . . , y(n).

Similarly, integrating over φ0,j and φ1,j, we find that

P (xtrain

j | θj, α, y
train) =

1
∏

y=0

U(αθj, α(1−θj), Iy,j , Oy,j) (2.27)

where Oy,j =
n
∑

i=1

I(y(i) = y, x
(i)
j = 0) and Iy,j =

n
∑

i=1

I(y(i) = y, x
(i)
j = 1).

With ψ and φ integrated out, we need deal only with the remaining parameters, α and

θ. Note that after eliminating ψ and the φ, the cases are no longer independent (though

they are exchangeable). However, conditional on the responses, ytrain, and on α, the values of

different features are still independent. This is crucial to the efficiency of the computations
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described below.

2.3.3 Predictions for Test Cases using Numerical Quadrature

We first describe how to predict the class for a test case when we are either using all features,

or using a subset of features without any attempt to correct for selection bias. We then

consider how to make predictions using our method of correcting for selection bias.

Suppose we wish to predict the response, y∗, in a test case for which we know the retained

features x∗
1:k = (x∗

1, · · · ,x∗
k) (having renumbered features as necessary). For this, we need

the following predictive probability:

P (y∗ |x∗

1:k, xtrain

1:k , y
train) =

P (y∗ | ytrain)P (x∗
1:k | y∗, xtrain

1:k , y
train)

1
∑

y=0

P (y∗ = y | ytrain)P (x∗
1:k | y∗ = y, xtrain

1:k , y
train)

(2.28)

Ie, we evaluate the numerator above for y∗ = 0 and y∗ = 1, then divide by the sum to

obtain the predictive probabilities. The first factor in the numerator, P (y∗ | ytrain), is given

by equation (2.26). It is sufficient to obtain the second factor up to a proportionality constant

that doesn’t depend on y∗, as follows:

P (x∗
1:k | y∗, xtrain

1:k , y
train) =

P (x∗
1:k, x

train
1:k | y∗, ytrain)

P (xtrain
1:k | ytrain)

(2.29)

∝ P (x∗

1:k, x
train

1:k | y∗, ytrain) (2.30)

This can be computed by integrating over α, noting that conditional on α the features are

independent:

P (x∗

1:k, x
train

1:k | y∗, ytrain) =

∫

P (α)P (x∗1:k, x
train

1:k | α, y∗, ytrain) dα (2.31)

=

∫

P (α)

k
∏

j=1

P (x∗

j , x
train

j | α, y∗, ytrain) dα (2.32)
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Each factor in the product above is found by using equation (2.27) and integrating over θj:

P (x∗

j , x
train

j | α, y∗, ytrain)

=

∫ 1

0

P (x∗

j | θj, α, xtrain

j , ytrain, y∗)P (xtrain

j | θj, α, y
train) dθj (2.33)

=

∫ 1

0

Bernoulli (x∗

j ; φ̂y∗,j)
1
∏

y=0

U(αθj, α(1−θj), Iy,j , Oy,j) dθj (2.34)

where φ̂y∗,j = (αθj + Iy∗,j) / (α +Ny∗), the posterior mean of φy∗,j given α and θj.

When using k features selected from a larger number, p, the predictions above, which

are conditional on only xtrain
1:k and ytrain, are not correct — we should also condition on

the event, S, that |COR(ytrain, xtrain
j )| ≤ γ for j = k + 1, . . . , p. We need to modify

the predictive probability of equation (2.28) by replacing P (x∗
1:k | y∗, xtrain

1:k , y
train) with

P (x∗
1:k | y∗, xtrain

1:k , y
train, S), which is proportional to P (x∗

1:k, xtrain

1:k , S | y∗, ytrain). Analo-

gously to equations (2.31) and (2.32), we obtain

P (x∗

1:k, x
train

1:k , S | y∗, ytrain)

=

∫

P (α)P (x∗

1:k, x
train

1:k , S | α, y∗, ytrain) dα (2.35)

=

∫

P (α)P (S | α, ytrain)

k
∏

j=1

P (x∗

j , x
train

j | α, y∗, ytrain) dα (2.36)

The factors for the k retained features are computed as before, using equation (2.34). The

additional correction factor that is needed (presented earlier as equation (2.13)) is

P (S | α, ytrain) =

p
∏

j=k+1

P (|COR(ytrain, xtrain

j )| ≤ γ | α, ytrain) (2.37)

=
[

P (|COR(ytrain, xtrain

t )| ≤ γ | α, ytrain)
]p−k

(2.38)

where t is any of the omitted features, all of which have the same probability of having a
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small correlation with y. We discuss how to compute this adjustment factor in the next

section.

To see intuitively why this adjustment factor will correct for selection bias, recall that as

discussed in Section (2.3.1), when α is small, features will be more likely to have a strong

relationship with the response. If the likelihood of α is based only on the selected features,

which have shown high correlations with the response in the training dataset, it will favor

values of α that are inappropriately small. Multiplying by the adjustment factor, which

favors larger values for α, undoes this bias.

We compute the integrals over α in equations (2.32) and (2.36) by numerical quadrature.

We use the midpoint rule, applied to u = F (α), where F is the cumulative distribution

function for the Inverse-Gamma(a, b) prior for α. The prior for u is uniform over (0, 1), and

so needn’t be explicitly included in the integrand. With K points for the midpoint rule, the

effect is that we average the value of the integrand, without the prior factor, for values of α

that are the 0.5/K, 1.5/K, . . . , 1− 0.5/K quantiles of its Inverse-Gamma prior. For each α,

we use Simpson’s Rule to compute the one-dimensional integrals over θj in equation (2.34).

2.3.4 Computation of the Adjustment Factor for Naive Bayes

Models

Our remaining task is to compute the adjustment factor of equation (2.38), which de-

pends on the probability that a feature will have correlation less than γ in absolute value.

Computing this seems difficult — we need to sum the probabilities of xtrain
t given ytrain, α

and θt over all configurations of xtrain
t for which |COR(ytrain, xtrain

t )| ≤ γ — but the com-

putation can be simplified by noticing that COR(xtrain
t , ytrain) can be written in terms of
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I0 =
∑n

i=1 I(y
(i) = 0, x

(i)
t = 1) and I1 =

∑n
i=1 I(y

(i) = 1, x
(i)
t = 1), as follows:

COR(xtrain

t , ytrain) =

n
∑

i=1

(

y(i) − ȳ
)

x
(i)
t

√

n
∑

i=1

(

y(i) − ȳ
)2
√

n
∑

i=1

(

x
(i)
t − x̄t

)2
(2.39)

=
(0− y) I0 + (1− y) I1

√

ny(1−y)
√

I0 + I1 − (I0 + I1)2/n
(2.40)

We write the above as Cor(I0, I1, y), taking n as known. This function is defined for 0 ≤

I0 ≤ n(1−y) and 0 ≤ I1 ≤ ny.

Fixing n, y, and γ, we can define the following sets of values for I0 and I1 (for some

feature xt) in terms of the resulting correlation with y:

L0 = { (I0, I1) : Cor(I0, I1, y) = 0 } (2.41)

L+ = { (I0, I1) : 0 < Cor(I0, I1, y) ≤ γ } (2.42)

L− = { (I0, I1) : −γ ≤ Cor(I0, I1, y) < 0 } (2.43)

H+ = { (I0, I1) : γ < Cor(I0, I1, y) } (2.44)

H− = { (I0, I1) : Cor(I0, I1, y) < −γ } (2.45)

A feature will be discarded if (I0, I1) ∈ L− ∪ L0 ∪ L+ and retained if (I0, I1) ∈ H− ∪H+.

These sets are illustrated in Figure 2.3.

We can write the probability needed in equation (2.38) using either L−, L0, and L+ or
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 3   +0.30  +0.11  −0.04  −0.17  −0.30  −0.41  −0.52  −0.64  −0.76
 4   +0.36  +0.18  +0.04  −0.09  −0.21  −0.33  −0.45  −0.57  −0.69
 5   +0.41  +0.25  +0.11  −0.02  −0.14  −0.26  −0.38  −0.50  −0.63
 6   +0.46  +0.31  +0.18  +0.05  −0.07  −0.19  −0.31  −0.44  −0.57
 7   +0.52  +0.38  +0.24  +0.12   0.00  −0.12  −0.24  −0.37  −0.52
 8   +0.57  +0.44  +0.31  +0.19  +0.07  −0.05  −0.18  −0.31  −0.46
 9   +0.63  +0.50  +0.38  +0.26  +0.14  +0.02  −0.11  −0.25  −0.41
10   +0.69  +0.57  +0.45  +0.33  +0.21  +0.09  −0.04  −0.18  −0.36
11   +0.76  +0.64  +0.52  +0.41  +0.30  +0.17  +0.04  −0.11  −0.30
12   +0.83  +0.72  +0.61  +0.50  +0.39  +0.27  +0.13  −0.03  −0.24

14   +1.00  +0.90  +0.81  +0.72  +0.62  +0.53  +0.42  +0.29   0.00
13   +0.91  +0.80  +0.70  +0.60  +0.49  +0.38  +0.25  +0.09  −0.16

0

       0      1      2      3      4      5      6      7      8

1
I

I

 0    0.00  −0.29  −0.42  −0.53  −0.62  −0.72  −0.81  −0.90  −1.00
 1   +0.16  −0.09  −0.25  −0.38  −0.49  −0.60  −0.70  −0.80  −0.91
 2   +0.24  +0.03  −0.13  −0.27  −0.39  −0.50  −0.61  −0.72  −0.83

Figure 2.3: The Cor function for a dataset with n = 22 and y = 14/22. The values of
Cor(I0, I1, y) are shown for the valid range of I0 and I1. Using γ = 0.2, the values of (I0,I1)
in L0 are shown in dark grey, those in L− or L+ in medium grey, and those in H− or H+ in
light grey.

H− and H+. We will take the latter approach here, as follows:

P ( |COR(xtrain

t , ytrain)| ≤ γ | α, ytrain)

= 1 − P ( (I0, I1) ∈ H− ∪H + | α, ytrain) (2.46)

= 1 −
∑

(I0,I1)∈H−∪H+

P (I0, I1 | α, ytrain) (2.47)

We can now exploit symmetries of the prior and of the Cor function to speed up compu-

tation. First, note that Cor(I0, I1, y) = −Cor(n(1−y)−I0, ny−I1, y), as can be derived from

equation (2.40), or by simply noting that exchanging labels for the classes should change only

the sign of the correlation. The one-to-one mapping (I0, I1) → (n(1−y)− I0, ny− I1), which

maps H− and H+ and vice versa (similarly for L− and L+), therefore leaves Cor unchanged.

The priors for θ and φ (see (2.19) and (2.20)) are symmetrical with respect to the class labels

0 and 1, so the prior probability of (I0, I1) is the same as that of (n(1−y)− I0, ny− I1). We
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can therefore rewrite equation (2.47) as

P ( |COR(xtrain

t , ytrain)| ≤ γ | α, ytrain) = 1 − 2
∑

(I0,I1)∈H+

P (I0, I1 | α, ytrain) (2.48)

At this point we write the probabilities for I0 and I1 in terms of an integral over θt, and

then swap the order of summation and integration, obtaining

∑

(I0,I1)∈H+

P (I0, I1 | α, ytrain) =

∫ 1

0

∑

(I0,I1)∈H+

P (I0, I1 | α, θt, y
train) dθt (2.49)

The integral over θt can be approximated using some one-dimensional numerical quadrature

method (we use Simpson’s Rule), provided we can evaluate the integrand.

The sum over H+ can easily be delineated because Cor(I0, I1, y) is a monotonically de-

creasing function of I0, and a monotonically increasing function of I1, as may be confirmed

by differentiating with respect to I0 and I1. Let b0 be the smallest value of I1 for which

Cor(0, I1, y) > γ. Taking the ceiling of the solution of Cor(0, I1, y) = γ, we find that

b0 = d1/(1/n + (1 − ȳ)/(nȳγ2))e. For b0 ≤ I1 ≤ ny, let rI1 be the largest value of I0 for

which Cor(I0, I1, y) > γ. We can write

∑

(I0,I1)∈H+

P (I0, I1 | α, θt, y
train) =

ny
∑

I1=b0

rI1
∑

I0=0

P (I0, I1 | α, θt, y
train) (2.50)

Given α and θt, I0 and I1 are independent, so we can reduce the computation needed by

rewriting the above expression as follows:

∑

(I0,I1)∈H+

P (I0, I1 | α, θt, y
train)

=

ny
∑

I1=b0

P (I1 | α, θt, y
train)

rI1
∑

I0=0

P (I0 | α, θt, y
train) (2.51)
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Note that the inner sum can be updated from one value of I1 to the next by just adding any

additional terms needed. This calculation therefore requires 1+ny−b0 ≤ n evaluations of

P (I1 | α, θt, y
train) and 1+rny ≤ n evaluations of P (I0 | α, θt, y

train).

To compute P (I1 | α, θt, y
train), we multiply the probability of any particular value for

xtrain
t in which there are I1 cases with y = 1 and xt = 1 by the number of ways this can occur.

The probabilities are found by integrating over φ0,t and φ1,t, as described in Section 2.3.2.

The result is

P (I1 | α, θt, y
train) =

(

ny
I1

)

U(αθt, α(1−θt), I1, ny − I1) (2.52)

Similarly,

P (I0 | α, θt, y
train) =

(

n(1−y)
I0

)

U(αθt, α(1−θt), I0, n(1−y)− I0) (2.53)

One can easily derive simple expressions for P (I1 | α, θt, y
train) and P (I0 | α, θt, y

train) in

terms of P (I1− 1 | α, θt, y
train) and P (I0− 1 | α, θt, y

train), which avoid the need to compute

gamma functions or large products for each value of I0 or I1 when these values are used

sequentially, as in equation (2.51).

2.3.5 A Simulation Experiment

In this section, we use a dataset generated from the naive Bayes model defined in Section 2.3.1

to demonstrate the lack of calibration that results when only a subset of features is used,

without correcting for selection bias. We show that our bias-correction method eliminates

this lack of calibration. We will also see that for the naive Bayes model only a small amount

of extra computational time is needed to compute the adjustment factor needed by our

method.

Fixing α = 300, and p = 10000, we used equations (2.16), (2.19) and (2.20) to generate a
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Figure 2.4: The absolute value of the sample correlation of each feature with the binary
response, in the training set, and in the test set. Each dot represents one of the 10000 binary
features. The training set correlations of the 1st, 10th, 100th, and 1000th most correlated
features are marked by vertical lines.



2 Avoiding Bias from Feature Selection 35

set of 200 training cases and a set of 2000 test cases, both having equal numbers of cases with

y = 0 and y = 1. We then selected four subsets of features, containing 1, 10, 100, and 1000

features, based on the absolute values of the sample correlations of the features with y. The

smallest correlation (in absolute value) of a selected feature with the class was 0.36, 0.27,

0.21, and 0.13 for these four subsets. These are the values of γ used by the bias correction

method when computing the adjustment factor of equation (2.38). Figure 2.4 shows the

absolute value of the sample correlation in the training set of all 10000 features, plotted

against the sample correlation in the test set. As can be seen, the high sample correlation

of many selected features in the training set is partly or wholly a matter of chance, with the

sample correlation in the test set (which is close to the real correlation) often being much

less. The role of chance is further illustrated by the fact that the feature with highest sample

correlation in the test set is not even in the top 1000 by sample correlation in the training

set.

For each number of selected features, we fit this data using the naive Bayes model with

the prior for ψ (equation (2.17)) having f0 = f1 = 1 and the prior for α (equation (2.18))

having shape parameter a = 0.5 and rate parameter b = 5. We then made predictions for the

test cases using the methods described in Section 2.3.3. The “uncorrected” method, based on

equation (2.28), makes no attempt to correct for the selection bias, whereas the “corrected”

method, with the modification of equation (2.36), produces predictions that account for the

procedure used to select the subset of features. We also made predictions using all 10000

features, for which bias correction is unnecessary.

We compared the predictive performance of the corrected method with the uncorrected

method in several ways. First, we looked at the error rate when classifying test cases by

thresholding the predictive probabilities at 1/2. As can be seen in Figure 2.5, there is little

difference in the error rates with and without correction for bias. However, the methods

differ drastically in terms of the expected error rate — the error rate we would expect based
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Figure 2.5: Actual and expected error rates with varying numbers of features selected, with
and without correction for selection bias. The solid line is the actual error rate on test cases.
The dotted line is the error rate that would be expected based on the predictive probabilities.
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Figure 2.6: Performance in terms of average minus log probability and average squared error,
with varying numbers of features selected, with and without correction for selection bias.
The left plot shows minus the average log probability of the correct class for test cases, with
1, 10, 100, 1000, and all 10000 features selected. The dashed line is with bias correction, the
dotted line without. The right plot is similar, but shows average squared error on test cases.
Note that when all 10000 features are used, there is no difference between the corrected and
uncorrected methods.
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on the predictive probabilities for the test cases, equal to (1/N)
∑

i p̂
(i) I(p̂(i) < 0.5) +

(1− p̂(i)) I(p̂(i) ≥ 0.5), where p̂(i) is the predictive probability of class 1 for test case i. The

predictive probabilities produced by the uncorrected method would lead us to believe that we

would have a much lower error rate than the actual performance. In contrast, the expected

error rates based on the predictive probabilities produced using bias correction closely match

the actual error rates.

Two additional measures of predictive performance are shown in Figure 2.6. One measure

of performance is minus the average log probability of the correct class in the N test cases,

which is −(1/N)
∑N

i=1 [y(i) log(p̂(i)) + (1−y(i)) log(1−p̂(i))]. This measure heavily penalizes

test cases where the actual class has a predictive probability near zero. Another measure,

less sensitive to such drastic errors, is the average squared error between the actual class (0

or 1) and the probability of class 1, given by (1/N)
∑N

i=1(y
(i)− p̂(i))2. The corrected method

outperforms the uncorrected one by both these measures, with the difference being greater for

minus average log probability. Interestingly, performance of the uncorrected method actually

gets worse when going from 1 feature to 10 features. This may be because the single feature

with highest sample correlation with the response does have a strong relationship with the

response (as may be likely in general), whereas some other of the top 10 features by sample

correlation have little or no real relationship.

We also looked in more detail at how well calibrated the predictive probabilities were.

Table 2.1 shows the average predictive probability for class 1 and the actual fraction of cases

in class 1 for test cases grouped according to the first decimal of their predictive probabilities,

for both the uncorrected and the corrected method. Results are shown using subsets of 1,

10, 100, and 1000 features, and using all features. We see that the uncorrected method

produces overconfident predictive probabilities, either too close to zero or too close to one.

The corrected method avoids such bias (the values for “Pred” and “Actual” are much closer),

showing that it is well calibrated.
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1 feature selected out of 10000 10 features selected out of 10000

Corrected Uncorrected Corrected Uncorrected

C # Pred Actual # Pred Actual # Pred Actual # Pred Actual

0 0 – – 0 – – 0 – – 237 0.046 0.312

1 0 – – 0 – – 3 0.174 0.000 349 0.149 0.444

2 0 – – 0 – – 126 0.270 0.294 68 0.249 0.500

3 0 – – 1346 0.384 0.461 467 0.360 0.420 300 0.360 0.443

4 1346 0.446 0.461 0 – – 566 0.462 0.461 189 0.443 0.487

5 0 – – 0 – – 461 0.554 0.566 48 0.546 0.417

6 654 0.611 0.581 0 – – 276 0.643 0.616 238 0.650 0.588

7 0 – – 654 0.736 0.581 97 0.733 0.742 180 0.737 0.567

8 0 – – 0 – – 4 0.825 0.750 192 0.864 0.609

9 0 – – 0 – – 0 – – 199 0.943 0.668

100 features selected out of 10000 1000 features selected out of 10000

Corrected Uncorrected Corrected Uncorrected

C # Pred Actual # Pred Actual # Pred Actual # Pred Actual

0 155 0.067 0.077 717 0.017 0.199 774 0.018 0.027 954 0.004 0.066

1 247 0.151 0.162 133 0.150 0.391 97 0.143 0.165 28 0.149 0.500

2 220 0.247 0.286 70 0.251 0.429 63 0.243 0.302 13 0.248 0.846

3 225 0.352 0.356 68 0.351 0.515 48 0.346 0.438 17 0.349 0.412

4 237 0.450 0.494 58 0.451 0.500 45 0.446 0.600 14 0.449 0.786

5 227 0.545 0.586 78 0.552 0.603 44 0.547 0.614 16 0.546 0.375

6 202 0.650 0.728 77 0.654 0.532 53 0.647 0.698 16 0.667 0.812

7 214 0.749 0.785 80 0.746 0.662 81 0.755 0.815 22 0.751 0.636

8 182 0.847 0.857 98 0.852 0.633 124 0.854 0.863 25 0.865 0.560

9 91 0.935 0.923 621 0.979 0.818 671 0.977 0.982 895 0.995 0.946

Complete data

C # Pred Actual

0 964 0.004 0.006

1 21 0.145 0.238

2 8 0.246 0.375

3 10 0.342 0.300

4 12 0.436 0.500

5 7 0.544 1.000

6 20 0.656 1.000

7 13 0.743 0.846

8 22 0.851 0.818

9 923 0.994 0.998

Table 2.1: Comparison of calibration for predictions found
with and without correction for selection bias, on data simu-
lated from the binary naive Bayes model. Results are shown
with four subsets of features and with the complete data
(for which no correction is necessary). The test cases were
divided into 10 categories by the first decimal of the pre-
dictive probability of class 1, which is indicated by the 1st
column “C”. The table shows the number of test cases in
each category for each method (“#”), the average predic-
tive probability of class 1 for cases in that category (“Pred”),
and the actual fraction of these cases that were in class 1
(“Actual”).
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Figure 2.7: Posterior distributions of log(α) for the simulated data, with different numbers
of features selected. The true value of log(α) is 5.7, shown by the vertical line. The solid line
is the posterior density using all features. For each number of selected features, the dashed
line is the posterior density including the factor that corrects for selection bias; the dotted
line is the posterior density without bias correction. The dashed and solid lines overlap in
the bottom two graphs. The dots mark the values of log(α) used to approximate the density,
at the 0.5/K, 1.5/K, . . . , (K−0.5)/K quantiles of the prior distribution (where K = 30).
The probabilities of xtrain at each of these values for α were computed, rescaled to sum to K,
and finally multiplied by the Jacobian, αP (α), to obtain the approximation to the posterior
density of log(α)

Number of Features Selected 1 10 100 1000 Complete data

Uncorrected Method 11 19 107 1057 10639

Corrected Method 12 19 107 1057 10639

Table 2.2: Computation times from simulation experiments with naive Bayes models
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The biased predictions of the uncorrected method result from an incorrect posterior

distribution for α, as illustrated in Figure 2.7. Without bias correction, the posterior based

on only the selected features incorrectly favours values of α smaller than the true value of

300. Multiplying by the adjustment factor corrects this bias in the posterior distribution.

Our software (available from http://www.utstat.utoronto.ca/∼longhai) is written in

the R language, with some functions for intensive computations such as numerical integration

and computation of the adjustment factor written in C for speed. We approximated the

integral with respect to α using the midpoint rule with K = 30 values for F (α), as discussed

at the end of Section 2.3.3. The integrals with respect to θ in equations (2.34) and (2.49)

were approximated using Simpson’s Rule, evaluating θ at 21 points.

Computation times for each method (on a 1.2 GHz UltraSPARC III processor) are shown

in Table 2.2. The corrected method is almost as fast as the uncorrected method, since the

time to compute the adjustment factor is negligible compared to the time spent computing

the integrals over θj for the selected features. Accordingly, considerable time can be saved

by selecting a subset of features, rather than using all of them, without introducing an

optimistic bias, though some accuracy in predictions may of course be lost when we discard

the information contained in the unselected features.

2.3.6 A Test Using Gene Expression Data

We also tested our method using a publicly available dataset on gene expression in normal

and cancerous human colon tissue. This dataset contains the expression levels of 6500 genes

in 40 cancerous and 22 normal colon tissues, measured using the Affymetrix technology. The

dataset is available at http://geneexpression.cinj.org/∼notterman/affyindex.html.

We used only the 2000 genes with highest minimal intensity, as selected by Alon, Barkai,

Notterman, Gish, Mack, and Levine (1999). In order to apply the binary naive Bayes model

to the data, we transformed the real-value data into binary data by thresholding at the
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median, separately for each feature.

We divided these 2000 genes randomly into 10 equal groups, producing 10 smaller

datasets, each with 200 features. We applies the corrected and uncorrected methods sepa-

rately to each of these 10 datasets, allowing some assessment of variability when comparing

performance. For each of these 10 datasets, we used leave-one-out cross validation to obtain

the predictive probabilities over the 62 cases. In this cross-validation procedure, we left out

each of the 62 cases in turn, selected the five features with the largest sample correlation

with the response (in absolute value), and found the predictive probability for the left-out

case using the binary naive Bayes model, with and without bias correction. The absolute

value of the correlation of the last selected feature was around 0.5 in all cases. We used the

same prior distribution, and the same computational methods, as for the demonstration in

Section 2.3.5.

Figure 2.8 plots the predictive probabilities of class 1 for all cases, with each of the

10 subsets of features. The tendency of the uncorrected method to produce more extreme

probabilities (closer to 0 and 1) is clear. However, when the predictive probability is close to

0.5, there is little difference between the corrected and uncorrected methods. Accordingly, the

two methods almost always classify cases the same way, if prediction is made by thresholding

the predictive probability at 0.5, and have very similar error rates. Note, however, that

correcting for bias would have a substantial effect if cases were classified by thresholding

the predictive probability at some value other than 0.5, as would be appropriate if the

consequences of an error are different for the two classes.

Figure 2.10 compares the two methods in terms of average minus log probability of the

correct class and in terms of average squared error. From these plots it is clear that bias

correction improves the predictive probabilities. In terms of average minus log probability,

the corrected method is better for all 10 datasets, and in terms of average squared error, the

corrected method is better for 8 out of 10 datasets. (A paired t test with these two measures
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Figure 2.8: Scatterplots of the predictive probabilities of
class 1 for the 10 subsets drawn from the colon cancer gene
expression data, with and without correction for selection
bias. Black circles are cases that are actually in class 1
(cancer); hollow circles are cases that are actually in class
0. Note that many case with predictive probabilities close
to 0 or 1 may overlap.
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Figure 2.9: Actual versus expected error rates on the colon cancer datasets, with and without
bias correction. Points are shown for each of the 10 subsets of features used for testing.
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Figure 2.10: Scatterplots of the average minus log probability of the correct class and of the
average squared error (assessed by cross validation) when using the 10 subsets of features
for the colon cancer gene expression data, with and without correcting for selection bias.



44 2 Avoiding Bias from Feature Selection

produced p-values of 0.00007 and 0.019 respectively.)

Finally, Figure 2.9 shows that our bias correction method reduces optimistic bias in

the predictions. For each of the 10 datasets, this plot shows the actual error rate (in the

leave-one-out cross-validation assessment) and the error rate expected from the predictive

probabilities. For all ten datasets, the expected error rate with the uncorrected method is

substantially less than the actual error rate. This optimistic bias is reduced in the corrected

method, though it is not eliminated entirely. The remaining bias presumably results from

the failure in this dataset of the naive Bayes assumption that features are independent within

a class.

2.4 Application to Bayesian Mixture Models

Mixture modelling is another way to model the joint distributions of the response variable and

the predictor variables, from which we can find the conditional distribution of the response

variable given the predictor variables. In this section we describe the application of the

selection bias correction method to a class of binary mixture models, which is a generalization

of the naive Bayes models.

2.4.1 Definition of the Binary Mixture Models

A complex distribution can be modeled using a mixture of finitely or infinitely many simple

distributions, often called mixture components, for example, independent Gaussian distribu-

tions for real values or independent Bernoulli distributions for binary values. Mixture models

are often applied in density estimation, classification, and latent class analysis problems, as

discussed, for example, by Everitt and Hand (1981), McLachlan and Basford (1988), and

Titterington, et al. (1985). For finite mixture models with K components, the density or
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Figure 2.11: A picture of Bayesian binary mixture models

probability function of the observation x is written as

f(x | φ0, . . . ,φK−1) =

K−1
∑

k=0

pk fk(x | φk) (2.54)

where pk is the mixing proportion of component fk, and φk is the parameter associated with

component fk.

A Bayesian mixture model is often defined by introducing a latent label variable for each

case, written as z. Given z = k, the conditional distribution of the observation x is the

distribution for component k:

x | z = k,φk ∼ fk(x | φk) (2.55)

We consider a two-component mixture model in this section, which is a generalization

of the naive Bayes model in Section 2.3. Most of the notation is therefore the same as in

that section, except that we use the 0th feature, x0, to represent the response y here (and so

xtrain
0 is equivalent to ytrain) for convenience of presentation. The parameters of the Bernoulli
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distributions are φz,0 (for the response x0), and φz,1, · · · , φz,p (for the features), collectively

denoted as φz, for z = 0, 1. The priors for φ0 and φ1 are assigned in the same way as for

binary naive Bayes model. The labels of the cases are assigned a prior in the same way as

for y in naive Bayes models. Conditional on the component labels, all the features and the

response are assumed to be mutually independent. The models are displayed by Figure 2.11,

and are described formally as follows:

ψ ∼ Beta (f1, f0) (2.56)

z(1), · · · , z(n) | ψ IID

∼ Bernoulli (ψ) (2.57)

α0 ∼ Inverse-Gamma(a0, b0) (2.58)

α ∼ Inverse-Gamma(a, b) (2.59)

αj =
{ α0 if j = 0

α if j > 0
(2.60)

θ0, θ1, · · · , θp IID

∼ Uniform(0, 1) (2.61)

φ0,j, φ1,j | αj, θj IID

∼ Beta (αjθj, αj(1− θj)) j = 0, 1, · · · , p (2.62)

x
(i)
j | z(i), φz(i),j ∼ Bernoulli (φz(i),j) i = 1, · · · , n (2.63)

The naive Bayes models described in Section 2.3 can be seen as a simpler form of the

above mixture models by letting z(1), · · · , z(n) equal the responses xtrain
0 , i.e., fixing φ0,0 = 1

and φ1,0 = 0. As for Bayesian naive Bayes models, ψ and θ0, . . . , θp can be integrated away

analytically from Bayesian binary mixture models. The cases are then no longer independent,

but still are exchangeable. This integration reduces the number of the parameters, therefore

improves Markov chain sampling or numerical quadrature if they are needed, though the

resulting model may be harder to manipulate.
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2.4.2 Predictions for Test Cases using MCMC

Let us start with no attempt to correct for the selection bias. We want to predict the

response, x∗
0, of a test case for which we know the retained features x∗1, · · · , x∗k (renumbering

the features as necessary), based on the training data xtrain
0:k . For this, we need to calculate

the predictive distribution:

P (x∗0 = 1 | x∗

1:k,x
train

0:k ) =
P (x∗0 = 1,x∗

1:k | xtrain
0:k )

P (x∗0 = 1,x∗
1:k | xtrain

0:k ) + P (x∗0 = 0,x∗
1:k | xtrain

0:k )
(2.64)

We therefore need to calculate P (x∗
0:k | xtrain

0:k ) for x∗0 = 1 and x∗0 = 0. P (x∗
0:k | xtrain

0:k ) can

be written as:

P (x∗

0:k | xtrain

0:k )

=
∑

ztrain

∫

α0

∫

α

∫

θ

P (x∗

0:k | xtrain

0:k , θ0:k, α0, α, z
train) ·

P (θ0:k, α0, α, z
train | xtrain

0:k ) dθ0:k dα dα0 (2.65)

=
1

P (xtrain

0:k )

∑

ztrain

∫

α0

∫

α

∫

θ

P (x∗

0:k | xtrain

0:k , θ0:k, α0, α, z
train) ·

P (xtrain

0:k | θ0:k, α0, α, z
train)P (θ0:k)P (α0)P (α)P (ztrain) dθ0:k dα dα0 (2.66)

The above integral is intractable analytically. We first approximate the integrals with

respect to α0 and α with the midpoint rule applied to the transformed variables u0 = F0(α0)

and u = F (α), where F0 and F are the cumulative distribution functions of the priors for α0

and α. Accordingly, the priors for u0 and u are uniform over (0, 1). Suppose the midpoint

rule evaluates the integrands with respect to u0 and u at K points respectively (K can be

different for u0 and u, for simplicity of presentation assume the same). After rewriting the

summation with respect to u0 and u over K points, (1−0.5)/K, (2−0.5)/K, . . . , (K−0.5)/K,

in terms of α0 and α, the midpoint rule approximation is equivalent to summing the integrand

in (2.66), without the prior distribution for α0 and α, over the quantiles of the priors for
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α0 and α corresponding to probabilities (1− 0.5)/K, (2− 0.5)/K, . . . , (K − 0.5)/K. Let us

denote the K quantiles of α0 by A0, and denote the K quantiles of α by A. The integral

in (2.66), with 1/P (x0:k) omitted (since it is the same proportionality factor for all x∗0), is

approximated by:

∑

ztrain

∑

α0∈A0

∑

α∈A

∫

θ

P (x∗

0:k | xtrain

0:k , θ0:k, α0, α, z
train) ·

P (xtrain

0:k | θ0:k, α0, α, z
train)P (θ0:k)P (ztrain) dθ0:k (2.67)

Since there are no prior terms in (2.67) for α0 and α, the above approximation with

midpoint rule applied to u0 and u can also be seen as approximating the continuous Inverse-

Gamma priors for α0 and α by the uniform distributions over the finite sets A0 and A.

Based on these discretized priors for α0 and α, we use Gibbs sampling method to draw

samples from the posterior distribution of θ0:k, α0, α, z
train, allowing the integral in (2.67) to

be approximated with the Monte Carlo method. The reason we use such a discretization for

the prior for α is to ease the computation of the adjustment factor, which depends on α. As

will be discussed later, when α is discrete, we can cache the values of the adjustment factors

for future use when the same α is used again.

We now start to derive the necessary formulae for performing Gibbs sampling for esti-

mating (2.67). Using the results from Section 2.3.2, P (x∗
0:k | xtrain

0:k , θ0:k, α, z
train) in (2.67) can

be calculated as follows:

P (x∗

0:k | xtrain

0:k , θ0:k, α0, α, z
train)

=

1
∑

z∗=0

P (z∗ | ztrain)P (x∗

0:k | xtrain

0:k , θ0:k, α0, α, z
train, z∗) (2.68)

=
1
∑

z∗=0

Bernoulli
(

z∗; ψ̂
)

k
∏

j=0

Bernoulli (x∗j ; φ̂z∗,j) (2.69)

where φ̂z∗,j = (αjθj + Iz∗,j) / (αj +n[z∗]), ψ̂ = (f1 +n[1])/(f0 + f1 +n), n[z] =
∑n

i=1 I(zi = z),
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Iz,j =
∑n

i=1 I(z
(i) = z, x

(i)
j = 1), and Oz,j =

∑n
i=1 I(z

(i) = z, x
(i)
j = 0).

Again, using the results from Section 2.3.2, the distribution of x
(i)
0:k given other training

cases, denoted by x
(−i)
0:k , which is needed to update z(i) with Gibbs sampling, can be found:

P (x
(i)
0:k | x

(−i)
0:k , z

train, θ0:k, α0, α) =

k
∏

j=0

Bernoulli (x
(i)
j ; φ̂

(−i)

z(i),j
) (2.70)

where φ̂
(−i)

z(i),j
= (αjθj + I

(−i)

z(i),j
)/(αj + n[z(i)](−i) − 1), I

(−i)

z(i),j
=
∑n

s=1 I(x
(s)
j = 1, z(s) = z(i), s 6= i)

and n[z(i)](−i) =
∑n

s=1 I(z
(s) = z(i), s 6= i).

Similarly, the distribution of the whole training data given ztrain, θ0:k, α0, α based on the

k retained features can be found:

P (xtrain

0:k | ztrain, α0, α, θ0:k) =

k
∏

j=0

1
∏

z=0

U(αjθj, αj(1−θj), Iz,j, Oz,j) (2.71)

Integrating away ψ gives the prior for z(1), · · · , z(n):

P (z(1), · · · , z(n)) = U(f1, f0, n
[1], n[0]) (2.72)

From the priors for z(1), · · · , z(n), the conditional distribution of z(i) given all other z(j) except

z(i), written as z(−i), can be found:

P (z(i) | z(−i)) = Bernoulli
(

z(i); ψ̂(−i)
)

(2.73)

where ψ̂(−i) = f1+n[1](−i)

f0+f1+n−1
and n[1](−i) =

∑n
s=1 I(zs = 1, s 6= i)

We now can write out the conditional distributions needed for performing Gibbs sampling.

The conditional distribution of z(i) is proportional to the product of (2.73) and (2.70):

P (z(i) | xtrain, z(−i), θ0:k, α0, α) ∝ Bernoulli
(

z(i); ψ̂(−i)
)

k
∏

j=0

Bernoulli (x
(i)
j ; φ̂

(−i)

z(i),j
) (2.74)
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The conditional distribution of θj is related to only feature j since the features are indepen-

dent given z(1), · · · , z(n):

P (θj | xtrain

j , αj, z
train) ∝

1
∏

z=0

U(αθj, α(1−θj), Iz,j, Oz,j) (2.75)

The conditional distribution of α given xtrain

0:k , ztrain, and θ0:k is proportional to the products

of the factors for j > 0 in (2.71) since the prior for α is uniform over A. And the conditional

distribution of α0 is proportional to the factor for j = 0 in (2.71).

The prediction described above is, however, invalid if the k features are selected from

a large number. It needs to be modified to condition also on the information S, i.e., we

should compute P (x∗0 | x∗
1:k,x

train
0:k ,S). The calculations are similar to the above, but with

P (xtrain
0:k | θ0:k, α, z

train) replaced by P (xtrain
0:k ,S | θ0:k, α, z

train) in (2.66). Accordingly, the

conditional distributions of α and z(1), · · · , z(n) are multiplied by the following adjustment

factor:

P (S | xtrain

0 , ztrain, α) =

(
∫ 1

0

P ( |COR(xtrain

t , xtrain

0 )| ≤ γ | xtrain

0 , ztrain, θt, α)dθt

)p−k

(2.76)

Compared with the adjustment factor for the Bayesian naive Bayes models, the ad-

justment factor (2.76) is more difficult to calculate, as we will discuss in the next section.

Furthermore, this adjustment factor depends on both α and the unknown latent label vari-

ables z(1), · · · , z(n), for which we need to sample using Markov chain sampling method. We

therefore need to recompute the adjustment factor whenever we change z(1), · · · , z(n) during

Markov chain sampling run. But we still need only to calculate the probability of one feature

being discarded then raise it to the power of p− k.
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Figure 2.12: Notations used in deriving the adjustment factor of Bayesian mixture models

2.4.3 Computation of the Adjustment Factor for Mixture Models

Computing P (S | xtrain
0 , ztrain, α) is similar to what was done for Bayesian naive Bayes models

in Section 2.3.4, with the difference that we condition on both xtrain
0 and ztrain. The region

|COR(xtrain
t , xtrain

0 )| ≤ γ can still be seen from Figure 2.3. The P (S | xtrain
0 , ztrain, α) is equal to

the sum of P (I0, I1 | xtrain
0 , ztrain, α) over L+ ∪ L− ∪ L0, or equivalently 1 minus the sum over

H+ ∪ H−. The probability over H+ is equal to the probability over H− since the prior for

θt is symmetrical about 1/2. We therefore need to compute the probability for each point

only in either H+ or H−. We then exchange the summation over H+ with the integration

with respect to θt. Next we discuss only how to calculate P (I0, I1 | xtrain
0 , ztrain, θt, α) for each

point (I0, I1).

We divide the training cases according to ztrain into two groups, and let I
[z]
0 =

∑n
i=1 I(z

(i) =

z, x
(i)
0 = 0, x

(i)
t = 1), and I

[z]
1 = I(z(i) = z, x

(i)
0 = 1, x

(i)
t = 1), where z = 0, 1. The probability

of (I
[z]
0 , I

[z]
1 ) is found by summing over all configurations of feature t that have z(i) = z and

results in (I
[z]
0 , I

[z]
1 ):

P (I
[z]
0 , I

[z]
1 | xtrain

0 , ztrain, θt, α)

=
(

n
[z]
0

I
[z]
0

)(

n
[z]
1

I
[z]
1

)

U(αθt, α(1− θt), I
[z]
0 + I

[z]
1 , n[z] − (I

[z]
0 + I

[z]
1 ) (2.77)
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where n
[z]
0 =

∑n
i=1 I(z

(i) = z, x
(i)
0 = 0), n

[z]
1 =

∑n
i=1 I(z

(i) = z, x
(i)
0 = 1) and n[z] =

∑n
i=1 I(zi = z).

Then, the joint probability function of (I0, I1) is found by summing over all possible

combinations of (I
[0]
0 , I

[0]
1 ) and (I

[1]
0 , I

[1]
1 ) that result in I

[0]
0 + I

[1]
0 = I0, I

[0]
1 + I

[1]
1 = I1:

P (I0, I1 | xtrain

0 , ztrain, θt, α) =
∑

I
[0]
0 + I

[1]
0 = I0

I
[0]
1 + I

[1]
1 = I1

1
∏

z=0

P (I
[z]
0 , I

[z]
1 | xtrain

0 , ztrain, θt, α) (2.78)

The way of finding the combinations of (I
[0]
0 , I

[0]
1 ) and (I

[1]
0 , I

[1]
1 ) that satisfy I

[0]
0 + I

[1]
0 = I0

and I
[0]
1 + I

[1]
1 = I1 is given in the Appendix 2 to this Chapter.

2.4.4 A Simulation Experiment

We tested our method using a data with 200 training cases and 2000 test cases, which are

generated from a Bayesian mixture model, by setting α = 300, φ00 = 0.1, and φ10 = 0.9, and

letting the number of z = 1 and z = 0 be equal in both training and test sets.

We then selected four subsets of features, containing 1, 10, 100, and 1000 features, based

on the absolute values of the sample correlations of the features with y. The smallest

correlation (in absolute value) of a selected feature with the class was 0.30, 0.24, 0.18, and

0.12 for these four subsets. These are the values of γ used by the bias correction method

when computing the adjustment factor.

For each number of selected features, we fit this data using the Bayesian mixture model

with the prior for ψ (equation (2.56)) having f0 = f1 = 1 and the Inverse-Gamma prior

for both α0 and α (equation (2.58) and (2.59)) both having shape parameter a = 0.5 and

rate parameter b = 5. After using Gibbs sampling to train the model, with and without

correction for the selection bias, we made predictions for the test cases.

We compared the predictive performance of the methods with and without correction for
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1 feature selected out of 10000 10 features selected out of 10000

Corrected Uncorrected Corrected Uncorrected

C # Pred Actual # Pred Actual # Pred Actual # Pred Actual

0 0 – – 0 – – 0 – – 19 0.089 0.105

1 0 – – 0 – – 0 – – 340 0.155 0.415

2 0 – – 0 – – 19 0.259 0.105 45 0.269 0.622

3 0 – – 0 – – 317 0.368 0.420 406 0.359 0.480

4 1083 0.488 0.472 1083 0.424 0.472 530 0.466 0.494 52 0.424 0.558

5 917 0.536 0.523 0 – – 552 0.549 0.500 54 0.560 0.407

6 0 – – 917 0.617 0.523 480 0.639 0.529 443 0.649 0.519

7 0 – – 0 – – 100 0.735 0.620 49 0.735 0.449

8 0 – – 0 – – 2 0.832 1.000 329 0.854 0.505

9 0 – – 0 – – 0 – – 263 0.945 0.593

100 features selected out of 10000 1000 features selected out of 10000

Corrected Uncorrected Corrected Uncorrected

C # Pred Actual # Pred Actual # Pred Actual # Pred Actual

0 71 0.072 0.183 605 0.033 0.286 692 0.033 0.140 919 0.016 0.185

1 195 0.154 0.308 122 0.144 0.361 129 0.148 0.271 33 0.145 0.455

2 237 0.250 0.300 86 0.246 0.465 88 0.247 0.375 28 0.240 0.429

3 229 0.349 0.328 63 0.350 0.508 64 0.350 0.500 21 0.350 0.619

4 234 0.454 0.504 62 0.448 0.597 68 0.454 0.426 20 0.441 0.400

5 259 0.549 0.556 90 0.551 0.589 71 0.548 0.634 25 0.552 0.480

6 253 0.652 0.565 66 0.650 0.530 69 0.646 0.580 20 0.648 0.700

7 251 0.748 0.673 87 0.749 0.529 83 0.744 0.795 31 0.749 0.645

8 192 0.848 0.729 140 0.856 0.564 143 0.857 0.804 44 0.856 0.545

9 79 0.928 0.734 679 0.965 0.666 593 0.966 0.841 859 0.980 0.818

Table 2.3: Comparison of calibration for predictions found with and without correction for
selection bias, on data simulated from a binary mixture model. The test cases were divided
into 10 categories by the first decimal of the predictive probability of class 1, which is
indicated by the 1st column “C”. The table shows the number of test cases in each category
for each method (“#”), the average predictive probability of class 1 for cases in that category
(“Pred”), and the actual fraction of these cases that were in class 1 (“Actual”).
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Figure 2.13: Actual and expected error rates with varying numbers (in log scale) of features
selected, with and without correction for selection bias. The solid line is the actual error
rate on test cases. The dotted line is the error rate that would be expected based on the
predictive probabilities.
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Figure 2.14: Performance in terms of average minus log probability and average squared
error, with varying numbers (in log scale) of features selected, with and without correction
for selection bias. The left plot shows minus the average log probability of the correct class
for test cases, with 1, 10, 100, and 1000 features selected. The dashed line is with bias
correction, the dotted line without. The right plot is similar, but shows average squared
error on test cases.
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selection bias in several ways. Table 2.3 shows how well calibrated the predictive probabilities

were, by looking at the actual fraction of class 1 of the test cases with predictive probabilities

within each of the ten intervals evenly spaced in (0, 1). This shows that the methods with

correction for selection bias are better calibrated than without correction. For the methods

with correction for selection bias, the actual fractions are closer to predictive probabilities,

whereas for the methods without such correction, they are more different, with predictive

probabilities incorrectly close to 0 or 1 for many cases. But we have seen that some bias,

although less severe, still exists for the methods with correction, which we will explain later.

The calibration can also be illustrated by comparing the actual error rate, from making

predictions by thresholding the predictive probabilities at 0.5, to the expected error rate,

equal to (1/N)
∑

i p̂
(i)I(p̂(i) < 0.5) + (1 − p̂(i))I(p̂(i) ≥ 0.5), where p̂(i) is the predictive

probability for test case i. As shown by Figure 2.13, the expected error rates for the methods

without correction for selection bias are much lower than the actual error rates, showing that

the predictions are overconfident. In contrast, the expected error rates and the actual error

rates are much closer for the methods with correction for selection bias, though there are

still gaps between them. From Figure 2.13, we also see that the actual error rates for the

methods with and without correction for selection bias are almost the same.

The remaining bias for the methods with correction for selection bias presumably results

from Markov chain Monte Carlo method. Since the two groups are not very apart with

α = 300, the latent values z(1), · · · , z(n) temporarily converge to the responses x
(1)
0 . . . , x

(n)
0 ,

even with correction for selection bias. The estimates of φ00 and φ10 are therefore very close

to 0 and 1. But the traces of α with correction for selection bias still move around much

bigger values in A than without correction. The probabilities of a test case belonging to

two groups with correction are therefore closer than without correction, making it difficult

to decide the label of the test case. The correction method, implemented with simple Gibbs

sampling, reduces the selection bias, but does not eliminate it entirely. This remaining bias
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will be eliminated entirely if one uses a more sophisticated Markov chain sampling method

that allows the Markov chains to explore more thoroughly in the space of z(1), · · · , z(n). Note

that, however, this is a matter of computation rather than of theory. In theory, the bias

will be eliminated entirely by conditioning on all information available in making Bayesian

inference if the data sets are generated from the Bayesian model.

The methods with and without correction for selection bias are also compared in terms

of average minus log probability and average squared error, as shown in Figure 2.14. In

both measures, the methods with the selection bias corrected are superior over the methods

without correction.

The predictive performance using the complete data was not shown in previous table

and figures, because it is ironically worse than using selected features. This is because the

Markov chain, using the simple Gibbs sampling, converges temporarily to only one group

if the initial labels are drawn randomly from the permutations of 1, . . . , n. Again, a more

sophisticated Markov chain sampling method will solve this problem.

We used Gibbs sampling to train the model. In each iteration of Gibbs sampling, we

update α and α0 once, and repeat 5 time the combination of updating the labels z(1), · · · , z(n)

once and updating each of θ1:k 20 times. In approximating the continuous priors for α0 and

α with the uniform distribution over the quantiles of the priors (equation (2.67)), we chose

K = 10, giving A = A0 = {2.60, 4.83, 7.56, 11.45, 17.52, 27.99, 48.57, 98.49, 279.60, 2543.14}.

Simpson’s Rule, which is used to approximate the integral with respect to θt for computing

the adjustment factor, evaluates the integrand at 11 points.

Our software (available from http://www.utstat.utoronto.ca/∼longhai) is written

entirely in R language. Computation times for each method (on a 2.2 GHz Opteron processor,

running 50 iterations of Gibbs sampling as described above) are shown in Table 2.4. The

computation of adjustment factor takes a large amount of extra time. This is because the

computation of a single adjustment factor is more complex than naive Bayes models and
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Number of Features Selected 1 10 100 1000

Uncorrected Method 70 82 193 1277

Corrected Method 3324 2648 2881 4300

Table 2.4: Computation times from simulation experiments with mixture models.

the computation needs to be redone whenever the latent values z(1), · · · , z(n) change. The

current method for computing the adjustment factor can still be improved. However, the

methods using selecting features and correcting for the selection bias still work faster than

using complete data, which takes about 40000 seconds for updating 50 iterations.

2.5 Conclusion and Discussion

We have proposed a Bayesian method for making well-calibrated predictions for a response

variable when using a subset of features selected from a larger number based on some measure

of dependency between the feature and the response. Our method results from applying the

basic principle that predictive probabilities should be conditional on all available information

— in this case, including the information that some features were discarded because they

appear weakly related to the response variable. This information can only be utilized when

using a model for the joint distribution of the response and the features, even though we are

interested only in the conditional distribution of the response given the features.

We applied this method to naive Bayes models with binary features that are assumed to

be independent conditional on the value of the binary response (class) variable. With these

models, we can compute the adjustment factor needed to correct for selection bias. Crucially,

we need only compute the probability that a single feature will exhibit low correlation with

the response, and then raise this probability to the number of discarded features. Due to

the simplicity of naive Bayes models, the methods with the selection bias corrected work

as fast as the methods without considering this corrrection. Substantial computation time
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can therefore be saved by discarding features that appear to have little relationship with the

response.

We also applied this method to mixture models for binary data. The computation of the

adjustment factor is more complex than for naive Bayes models, and it needs to be computed

many times. But the method is still feasible, and will be faster than using all features when

the number of available features is huge.

The practical utility of the bias correction method we describe would be much improved

if methods for more efficiently computing the required adjustment factor could be found,

which could be applied to a wide class of models.

Appendix 1:

Proof of the well-calibration of the Bayesian Prediction

Suppose we are interested in predicting whether a random vector Y is in a set A if we know

the value of another random vector X. Here, X is all the information we know for predicting

Y , such as the information from the training data and the feature values of a test case. And

Y could be any unknown quantity, for example a model parameters or the unknown response

of a test case. For discrete Y , A may contain only a single value; for continuous Y , it is

a set such that the probability of Y ∈ A is not 0 (otherwise any predictive method giving

predictive probability 0 is well-calibrated). From a Bayesian model for X and Y , we can

derive a marginal joint distribution for X and Y , P (X,Y ) (which may be a probability

function or a density function, or a combination of probability and density function), by

integrating over the prior for the model parameters.

Let us denote a series of independent experiments from P (X,Y ) as (X i,Y i), for i =

1, 2, . . . . Suppose a predictive method predicts that event Y ∈ A will occur with probability

Ŷ (x) after seeing X = x. Ŷ (x) is said to be well-calibrated if, for any two numbers
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c1, c2 ∈ (0, 1) (assuming c1 < c2) such that P ( Ŷ (X i) ∈ (c1, c2) ) 6= 0, the fraction of Y i ∈ A

among those experiments with predictive probability, Ŷ (X i), between c1 and c2, will be

equal to the average of the predictive proabilities (with P -probability 1), when the number

of experiments, k, goes to ∞, that is,

∑k
i=1 I( Y i ∈ A and Ŷ (X i) ∈ (c1, c2) )

∑k
i=1 I( Ŷ (X i) ∈ (c1, c2) )

−
∑k

i=1 Ŷ (X i) I( Ŷ (X i) ∈ (c1, c2) )
∑k

i=1 I( Ŷ (X i) ∈ (c1, c2) )
−→ 0 (2.79)

This definition of well-calibration is a special case for iid experiments of what is defined

in (Dawid 1982). Note that this concept of calibration is with respect to averaging over both

the data and the parameters drawn from the prior.

We will show that under the above definition of calibration, the Bayesian predictive

function Ŷ (x) = P (Y ∈ A | X = x) is well-calibrated.

First, from the strong law of large numbers, the left-hand of (2.79) converges to:

P (Y ∈ A and Ŷ (X) ∈ (c1, c2))

P (Ŷ (X) ∈ (c1, c2))
− E( Ŷ (X) I(Ŷ (X) ∈ (c1, c2) ) )

P (Ŷ (X) ∈ (c1, c2))
(2.80)

We then need only show that the expression (2.80) is actually equal to 0, i.e., the numerators

in two terms are the same. This equality can be shown as follows:

P (Y ∈ A and Ŷ (X) ∈ (c1, c2))

=

∫

I( Ŷ (x) ∈ (c1, c2))P (Y ∈ A | X = x)PX(x) dx (2.81)

=

∫

I( Ŷ (x) ∈ (c1, c2)) Ŷ (x)PX(x) dx (2.82)

= E( Ŷ (X) I(Ŷ (X) ∈ (c1, c2) ) ) (2.83)

What is essential from (2.81) to (2.82) is that the Bayesian predictive function Ŷ (x) is just

the conditional probability P (Y ∈ A | X = x).

The Bayesian predictive function Ŷ (x) = P (Y ∈ A | X = x) also has the following
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property, which is helpful in understanding the concept of well-calibration:

P (Y ∈ A | Ŷ (X) ∈ (c1, c2)) = E(Ŷ (X) | Ŷ (X) ∈ (c1, c2)) ∈ (c1, c2) (2.84)

P (Y ∈ A | Ŷ (X) ∈ (c1, c2)) is just the first term in (2.80), and is equal to the second term

in (2.80), which can be written as E(Ŷ (X) | Ŷ (X) ∈ (c1, c2)). This conditional expectation

is obviously between c1 and c2.

Appendix 2:

Details of the Computation of the Adjustment Factor

for Binary Mixture Models

Delineating H+

With the monotonicity of Cor(I1, I0; x
train
0 ) with respect to either I1 or I0, we can easily

determine the bound of I1 for each I0 that satisfies Cor(I1, I0; x) ≤ γ by solving the equation:

|Cor(I0, I1; x
train

0 )| = γ (2.85)

then rounding to the appropriate integers and truncating them by 0 and n1. I.e. the lower

bound is max(0, dle) and the upper bound is min(n1, buc), where l and u are the two solutions

of equation (2.85). When I0 = 0, if I1 is also 0, we assume the correlation of xtrain
0 and xtrain

t

is 0, therefore the lower bound is set to be 0. Similarly, when I0 = n0, the upper bound is

set to be n1.
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Computation of P (I
[z]
0 , I

[z]
1 | xtrain

0 , ztrain, θt, α) with formula (2.77)

We need to calculate P (I
[z]
0 , I

[z]
1 | xtrain

0 , ztrain, θt, α) for all I
[z]
0 ∈ {0, · · · , n[z]

0 } and I
[z]
1 ∈

{0, · · · , n[z]
1 }. These values are saved with a matrix T [z] for convenience. We don’t have

to evaluate each element of T [z] by noting that the third factor of equation (2.78) depends

only on I
[z]
0 + I

[z]
1 , i.e. the number of xtrain

t = 1. For each k ∈ {0, 1, · · · , n[z]
0 + n

[z]
1 }, we

need to evaluate it only once. Then go along the diagonal line I
[z]
0 + I

[z]
1 = k to obtain

the elements of T [z]. The lower bound of I
[z]
1 on this line is max(0, k − n

[z]
0 ) and the upper

bound is min(k, n
[z]
1 ). For each I

[z]
1 between the lower and upper bounds, correspondingly

I
[z]
0 = k − I

[z]
1 .

For each line associated with k, only when I
[z]
1 = max(0, k − n

[z]
0 ) we need to evaluate

(2.78), then we can obtain the remaining values using the following relation between two

successive elements on the line:

P (I
[z]
0 , I

[z]
1 | xtrain

0 , ztrain, α, θt)

P (I
[z]
0 + 1, I

[z]
1 − 1 | xtrain

0 , ztrain, α, θt)
=

(

n
[z]
0

I
[z]
0

)(

n
[z]
1

I
[z]
1

)

(

n
[z]
0

I
[z]
0 + 1

)(

n
[z]
1

I
[z]
1 − 1

)

(2.86)

=
(I

[z]
0 + 1)(n

[z]
1 − I

[z]
1 + 1)

(n
[z]
0 − I

[z]
0 )I

[z]
1

(2.87)

Computation of P (I0, I1 | xtrain

0 , ztrain, θt, α) with formula (2.78)

For each (I0, I1) ∈ H+, we need find all the pairs of (I
[0]
0 , I

[0]
1 ) and (I

[1]
0 , I

[1]
1 ) that satisfy

I
[0]
0 + I

[1]
0 = I0, and 0 ≤ I

[0]
0 ≤ n

[0]
0 , 0 ≤ I

[1]
0 ≤ n

[1]
0 (2.88)

I
[0]
1 + I

[1]
1 = I1, and 0 ≤ I

[0]
1 ≤ n

[0]
1 , 0 ≤ I

[1]
1 ≤ n

[1]
1 (2.89)

The decompositions of I0 and I1 are independent and the methods are identical. Taking

I0 as example, we determine the bound of I
[0]
0 and I

[1]
0 by truncating the straight line of
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I
[0]
0 + I

[1]
0 = I0 with the square determined by (0, n

[0]
0 )× (0, n

[1]
0 ). By this way, we obtain the

decompositions as follows:

I
[0]
0 ∈ {max(0, I0 − n

[1]
0 ), · · · ,min(n

[0]
0 , I0)} ≡ B

[0]
01 , and I

[1]
0 = I0 − I

[0]
0 (2.90)

I
[0]
1 ∈ {max(0, I1 − n

[1]
1 ), · · · ,min(n

[0]
1 , I1)} ≡ B

[0]
11 , and I

[1]
1 = I1 − I

[0]
1 (2.91)

We make a sub-matrix S [0] from T [0], which has been computed in Section 2.5, by taking

the rows in B
[0]
01 and the columns in B

[0]
11 , and accordingly make S [1] from T [1] by taking

the rows in I0 − B
[0]
01 and the columns in I1 − B

[0]
11 . Then multiplying S [0] and S [1] element

by element (i.e. the corresponding elements of S [0] and S [1] are multiplied together) makes

matrix S. Summing all the elements of S together yields P (I0, I1 | xtrain
0 , ztrain, θt, α).



Chapter 3

Compressing Parameters in Bayesian

Models with High-order Interactions

Abstract. Bayesian regression and classification with high order interactions is largely

infeasible because Markov chain Monte Carlo (MCMC) would need to be applied with a huge

number of parameters, which typically increases exponentially with the order. In this chapter

we show how to make it feasible by effectively reducing the number of parameters, exploiting

the fact that many interactions have the same values for all training cases. Our method uses

a single “compressed” parameter to represent the sum of all parameters associated with

a set of patterns that have the same value for all training cases. Using symmetric stable

distributions as the priors of the original parameters, we can easily find the priors of these

compressed parameters. We therefore need to deal only with a much smaller number of

compressed parameters when training the model with MCMC. The number of compressed

parameters may have converged before considering the highest possible order. After training

the model, we can split these compressed parameters into the original ones as needed to

make predictions for test cases. We show in detail how to compress parameters for logistic

sequence prediction and logistic classification models. Experiments on both simulated and

real data demonstrate that a huge number of parameters can indeed be reduced by our

compression method.
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64 3 Compressing Parameters in Bayesian Models with High-order Interactions

3.1 Introduction

In many regression and classification problems, the response variable y depends on high-

order interactions of “features” (also called “covariates”, “inputs”, “predictor variables”, or

“explanatory variables”). Some complex human diseases are found to be related to high-

order interactions of susceptibility genes and environmental exposures (Ritchie et. al. 2001).

The prediction of the next character in English text is improved by using a large number

of preceding characters (Bell, Cleary and Witten 1990). Many biological sequences have

long-memory properties.

When the features are discrete, we can employ high-order interactions in regression and

classification models by introducing, as additional predictor variables, the indicators for each

possible interaction pattern, equal to 1 if the pattern occurs for a subject and 0 otherwise.

In this chapter we will use “features” for the original discrete measurements and “predictor

variables” for these derived variables, to distinguish them. The number of such predictor

variables increases exponentially with the order of interactions. The total number of order-k

interaction patterns with k binary (0/1) features is 2k, accordingly we will have 2k predictor

variables. A model with interactions of even a moderate order is prohibitive in real applica-

tions, primarily for computational reasons. People are often forced to use a model with very

small order, say only 1 or 2, which, however, may omit useful high-order predictor variables.

Besides the computational considerations, regression and classification with a great many

predictor variables may “overfit” the data. Unless the number of training cases is much larger

than the number of predictor variables the model may fit the noise instead of the signal in

the data, with the result that predictions for new test cases are poor. This problem can

be solved by using Bayesian modeling with appropriate prior distributions. In a Bayesian

model, we use a probability distribution over parameters to express our prior belief about

which configurations of parameters may be appropriate. One such prior belief is that a

parsimonious model can approximate the reality well. In particular, we may believe that most
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high-order interactions are largely irrelevant to predicting the response. We express such a

prior by assigning each regression coefficient a distribution with mode 0, such as a Gaussian

or Cauchy distribution centered at 0. Due to its heavy tail, a Cauchy distribution may be

more appropriate than a Gaussian distribution to express the prior belief that almost all

coefficients of high order interactions are close to 0, with a very small number of exceptions.

Additionally, the priors we use for the widths of Gaussian or Cauchy distributions for higher

order interaction should favor small values. The resulting joint prior for all coefficients favors

a model with most coefficients close to 0, that is, a model emphasizing low order interactions.

By incorporating such prior information into our inference, we will not overfit the data with

an unnecessarily complex model.

However, the computational difficulty with a huge number of parameters is even more

pronounced for a Bayesian approach than other approaches, if we have to use Markov chain

Monte Carlo methods to sample from the posterior distribution, which is computationally

burdensome even for a moderate number of parameters. With more parameters, a Markov

chain sampler will take longer for each iteration and require more memory, and may need

more iterations to converge or get trapped more easily in local modes. Applying Markov chain

Monte Carlo methods to regression and classification with high-order interactions therefore

seems infeasible.

In this chapter, we show how these problems can be solved by effectively reducing the

number of parameters in a Bayesian model with high-order interactions, using the fact that

in a model that uses all interaction patterns, from a low order to a high order, many predictor

variables have the same values for all training cases. For example, if an interaction pattern

occurs in only one training case, all the interaction patterns of higher order contained in it

will also occur in only that case and have the same values for all training cases — 1 for that

training case and 0 for all others. Consequently, only the sum of the coefficients associated

with these predictor variables matters in the likelihood function. We can therefore use a
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single “compressed” parameter to represent the sum of the regression coefficients for a group

of predictor variables that have the same values in training cases. For models with very high

order of interactions, the number of such compressed parameters will be much smaller than

the number of original parameters. If the priors for the original parameters are symmetric

stable distributions, such as Gaussian or Cauchy, we can easily find the prior distributions

of these compressed parameters, as they are also symmetric stable distributions of the same

type. In training the model with Markov chain Monte Carlo methods we need to deal only

with these compressed parameters. After training the model, the compressed parameters

can be split into the original ones as needed to make predictions for test cases. Using our

method for compressing parameters, one can handle Bayesian regression and classification

problems with very high order of interactions in a reasonable amount of time.

This chapter will be organized as follows. We first describe Bayesian logistic sequence pre-

diction models and Bayesian logistic classification models to which our compression method

can be applied. Then, in Section 3.3 we describe in general terms the method of compressing

parameters, and how to split them to make predictions for test cases. We then apply the

method to logistic sequence models in Section 3.4, and to logistic classification models in

Section 3.5. There, we will describe the specific schemes for compressing parameters for

these models, and use simulated data and real data to demonstrate our method. We draw

conclusions and discuss future work in Section 3.6.

3.2 Two Models with High-order Interactions

3.2.1 Bayesian Logistic Sequence Prediction Models

We often need to predict the next state of a sequence given its preceding states, for example

in speech recognition (Jelinek 1998), in text compression (Bell, Cleary, and Witten 1990),

and in many others. We write a sequence of length O + 1 as x1, . . . , xO, xO+1, where xt
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Figure 3.1: A picture of the coefficients, β, for all patterns in binary sequences of length
O = 3. β[A1A2A3] is associated with the pattern written as [A1A2A3], with At = 0 meaning
that xt is allowed to be either 1 or 2, in other words, xt is ignored in defining this pattern.
For example, β[000] is the intercept term. These coefficients are used in defining the linear
function l ((x1, x2, x3),β) in the logistic model (3.1). For each combination of (x1, x2, x3) on
the left column, l ((x1, x2, x3),β) is equal to the sum of β’s along the path linked by lines,
from β[x1x2x3] to β[000].

takes values from 1 to Kt, for t = 1, . . . , O, and xO+1 takes values from 1 to K. We call

x1, . . . , xO = x1:O the historic sequence. For subject i we write its historic sequence and

response as x
(i)
1:O and x

(i)
O+1. We are interested in modelling the conditional distribution

P (xO+1 | x1:O).

An interaction pattern P is written as [A1A2 . . . AO], where At can be from 0 to Kt, with

At = 0 meaning that xt can be any value from 1 to Kt. For example, [0 . . . 01] denotes the

pattern that fixes xO = 1 and allows x1, . . . , xO−1 to be any values in their ranges. When

all nonzero elements of P are equal to the corresponding elements of a historic sequence,
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x1:O, we say that pattern P occurs in x1:O, or pattern P is expressed by x1:O, denoted by

x1:O ∈ P. We will use the indicator I(x1:O ∈ P) as a predictor variable, whose coefficient

is denoted by βP . For example, β[0···0] is the intercept term. A logistic model assigns each

possible value of the response a linear function of the predictor variables. We use β
(k)
P

to

denote the coefficient associated with pattern P and used in the linear function for xO+1 = k.

For modeling sequences, we consider only the patterns where all zeros (if any) are at the

start. Let us denote all such patterns by S. We write all coefficients for xO+1 = k, i.e.,
{

β
(k)
P
| P ∈ S

}

, collectively as β(k). Figure (3.1) displays β(k) for binary sequence of length

O = 3, for some k, placed in a tree-shape.

Conditional on β(1), . . . ,β(K) and x1:O, the distribution of xO+1 is defined as

P (xO+1 = k | x1:O,β
(1), . . . ,β(K)) =

exp(l (x1:O,β
(k)))

∑K
j=1 exp(l (x1:O,β

(j)))
(3.1)

where

l (x1:O,β
(k)) =

∑

P∈S

β
(k)
P

I(x1:O ∈ P) = β
(k)
[0···0] +

O
∑

t=1

β
(k)
[0···xt···xO] (3.2)

In Figure 3.1, we display the linear functions for each possible combination of (x1, x2, x3)

on the left column, by linking together all β’s in the summation (3.2) with lines, from β[x1x2x3]

to β[000].

The prior for each β
(k)
P

is a Gaussian or Cauchy distribution centered at 0, whose width

depends on the order, o(P), of P, which is the number of nonzero elements of P. There are

O+1 such width parameters, denoted by σ0, . . . , σO. The σo’s are treated as hyperparameters,

assigned Inverse Gamma prior distributions with some shape and rate parameters, leaving

their values to be determined by the data. In summary, the hierarchy of the priors is:
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σo ∼ Inverse-Gamma(αo , (αo + 1)wo), for o = 0, . . . , O

β
(k)
P
| σo(P) ∼ Cauchy(0, σo(P)) or N(0, σ2

o(P)), for P ∈ S

(3.3)

where Inverse-Gamma(α, λ) denotes an Inverse Gamma distribution with density function

x−α−1 λα exp(−λ/x)/Γ(α). We express α and λ in (3.3) so that the mode of the prior is wo.

3.2.2 Remarks on the Sequence Prediction Models

The Inverse Gamma distributions have heavy upward tails when α is small, and particularly

when α ≤ 1, they have infinite means. An Inverse Gamma distribution with αo ≤ 1 and

small wo, favors small values around wo, but still allows σo to be exceptionally large, as

needed by the data. Similarly, the Cauchy distributions have heavy two-sided tails. The

absolute value of a Cauchy random variable has infinite mean. When a Cauchy distribution

with center 0 and a small width is used as the prior for a group of parameters, such as all

β’s of the interaction patterns with the same order in (3.3), a few parameters may be much

larger in absolute value than others in this group. As the priors for the coefficients of high-

order interaction patterns, the Cauchy distributions can therefore express more accurately

than the Gaussian distributions the prior belief that most high-order interaction patterns

are useless in predicting the response, but a small number may be important.

It seems redundant to use a β(k) for each k = 1, . . . , K in (3.1) since only the differences

between β(k) matter in (3.1). A non-Bayesian model could fix one of them, say β(1), all equal

to 0, so as to make the parameters identifiable. However, when K 6= 2, forcing β(1) = 0 in

a Bayesian model will result in a prior that is not symmetric for all k, which we may not

be able to justify. When K = 2, we do require that β(1) are all equal to 0, as there is no

asymmetry problem.

Inclusion of βP other than the highest order is also a redundancy, which facilitates the

expression of appropriate prior beliefs. The prior distributions of linear functions of similar
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historic sequences x1:O are positively correlated since they share some common β’s, for exam-

ple, in the model displayed by Figure 3.1, l ((1, 1, 1),β) and l ((2, 1, 1),β) share β[011], β[001]

and β[000]. Consequently, the predictive distributions of xO are similar given similar x1:O. By

incorporating such a prior belief into our inference, we borrow “statistical strength” for those

historic sequences with few replications in the training cases from other similar sequences

with more replications, avoiding making an unreasonably extreme conclusion due to a small

number of replications.

3.2.3 Bayesian Logistic Classification Models

In this section we define the general Bayesian classification models with high-order interac-

tions. We write the feature vector of dimension p as (x1, . . . , xp), or collectively x1:p, where

xt takes values from 1 to Kt, for t = 1, . . . , p. In this thesis, we consider only classification

problems in which the response y is discrete, assumed to take values from 1 to K. But

our compression method could be applied to regression problems without any difficulty. The

features and response for subject i are written as x
(i)
1:p and y(i). We are interested in modeling

the conditional distribution P (y | x1:p).

A pattern P is written as [A1A2 . . . Ap], where At can be from 0 to Kt, with At = 0

meaning that xt can be any value from 1 to Kt. For example, [0 . . . 01] denotes the pattern

that fixes xp = 1 and allows x1, . . . , xp−1 to be any values in their ranges. When all nonzero

elements of P are equal to the corresponding elements of a feature vector, x1:p, we say that

pattern P occurs in x1:p, or pattern P is expressed by x1:p, denoted by x1:p ∈ P. The

number of nonzero elements of a pattern P is called the order of P, denoted by o(P). All

the patterns of order o are denoted by P
o, and all the patterns from order 0 to order O are

denoted by P
0:O =

⋃O
o=0 Po. All the patterns that are of order o and expressed by a feature

vector x1:p, are denoted by P
o
x1:p

= { [A1, . . . , Ap] | At = 0 or xt and
∑p

t=1 I(At 6= 0) = o}.
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Figure 3.2: A picture displaying all the interaction patterns, from order 0 to order 3, of 3
features x1, x2, x3, where xt is either 1 or 2. A pattern, written as [A1A2A3], is shown by 3
numbers linked by lines, where At can be an integer from 0 to 2, with At = 0 meaning xt

could be either 1 or 2. The order of A1, A2, A3 on the above graph can be changed to any
permutation of A1, A2, A3.
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There are totally
(

p
o

)

patterns in Po
x1:p

. For example, P
2
(1,2,1) = {[0, 2, 1], [1, 0, 1], [1, 2, 0]}.

Figure 3.2 displays P
0:3 for 3 binary (1 / 2) features x1, x2, x3. The patterns expressed by a

feature vector (x1, x2, x3) can be found from such a graph, by searching from the root along

the lines pointing to At = 0 and At = xt.

We will use the indicator I(x1:p ∈ P) as a predictor variable, with coefficient denoted by

βP . For example, β[0···0] is the intercept term. A logistic model assigns each possible value of

the response a linear function of the predictor variables. We use β
(k)
P

to denote the coefficient

associated with pattern P and used in the linear function for y = k. All the coefficients for

y = k are written as β(k) = {β(k)
P
| P ∈ P

0:O}.

A Bayesian logistic classification model using all interaction patterns from order 0 to

order O is defined as follows:

P (y = k | x1:p,β
(1), . . . ,β(K)) =

exp(l (x1:p,β
(k)))

∑K
j=1 exp(l (x1:p,β

(j)))
(3.4)

where

l (x1:p,β
(k)) =

∑

P∈P
0:O

β
(k)
P
I(x1:p ∈ P) =

O
∑

o=0

∑

P∈P
o

x1:p

β
(k)
P

(3.5)

The priors for β
(k)
P

are given in the same way as in (3.3).

The remarks regarding the Bayesian sequence prediction models in Section 3.2.2 still

apply to the above classification models. Compared with the classification models, the

Bayesian sequence prediction models are more restrictive models, using only the interaction

patterns with all zeros at the start as predictor variables.
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3.3 Our Method for Compressing Parameters

In this section we describe in general terms our method for compressing parameters in

Bayesian models, and how the original parameters can later be retrieved as needed for use

in making predictions for test cases.

3.3.1 Compressing Parameters

In the above high-order models, the regression parameters of the likelihood function can

be divided into a number of groups such that the likelihood function depends only on the

sums over these groups, as shown by equation (3.8) below. We first use the Bayesian logistic

sequence models to illustrate this fact. The likelihood function of β(k), for k = 1, . . . , K, is

the product of probabilities in (3.1) applied to the training cases, x
(i)
1:O, x

(i)
O+1, for i = 1, . . . , N

(collectively denoted by D). It can be written as follows:

Lβ(β(1), . . . ,β(K) | D) =

N
∏

i=1

exp(l (x
(i)
1:O,β

(x
(i)
O+1)))

∑K
j=1 exp(l (x

(i)
1:O,β

(j)))
(3.6)

(When K = 2, β(1) is fixed at 0, and therefore not included in the above likelihood function.

But for simplicity, we do not write another expression for K = 2.)

As can be seen in (3.2), the function l (x1:O,β) is the sum of the β’s associated with the

interaction patterns expressed by x1:O. If a group of interaction patterns are expressed by

the same training cases, the associated β’s will appear simultaneously in the same factors

of (3.6). The likelihood function (3.6) therefore depends only on the sum of these β’s, rather

than the individual ones. Suppose the number of such groups is G. The parameters in group

g are rewritten as βg1, . . . , βg,ng
, and the sum of them is denoted by sg:

sg =

ng
∑

k=1

βgk, for g = 1, . . . , G (3.7)
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The likelihood function can then be rewritten as:

Lβ(β11, . . . , β1,n1, . . . , βG1, . . . , βG,nG
)

= L

(

n1
∑

k=1

β1k, . . . ,

nG
∑

k=1

βGk

)

= L(s1, . . . , sG) (3.8)

(The above β’s are only the regression coefficients for the interaction patterns occurring in

training cases. The predictive distribution for a test case may use extra regression coefficients,

whose distributions depend only on the priors given relevant hyperparameters.)

We need to define priors for the βgk in a way that lets us easily find the priors of the

sg. For this purpose, we could assign each βgk a symmetric stable distribution centered at 0

with width parameter σgk. Symmetric stable distributions (Feller 1966) have the following

additive property: If random variables X1, . . . , Xn are independent and have symmetric

stable distributions of index α, with location parameters 0 and width parameters σ1, . . . , σn,

then the sum of these random variables,
∑n

i=1Xi, also has a symmetric stable distribution

of index α, with location parameter 0 and width parameter (
∑n

i=1 σ
α
i )1/α. Symmetric stable

distributions exist and are unique for α ∈ (0, 2]. The symmetric stable distributions with

α = 1 are Cauchy distributions. The density function of a Cauchy distribution with location

parameter 0 and width parameter σ is [πσ(1+x2/σ2)]−1. The symmetric stable distributions

with α = 2 are Gaussian distributions, for which the width parameter is the standard

deviation. Since the symmetric stable distributions with α other than 1 or 2 do not have

closed form density functions, we will use only Gaussian or Cauchy priors. That is, each

parameter βgk has a Gaussian or Cauchy distribution with location parameter 0 and width

parameter σgk:

βgk ∼ N(0, σ2
gk) or βgk ∼ Cauchy(0, σgk) (3.9)

As can been seen from the definitions of the priors (equation (3.3)), some σgk may be common
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Figure 3.3: A picture depicting the sampling procedure after compressing parameters.

for different βgk, but for simplicity we denote them individually. We might also treat the

σgk’s as unknown hyperparameters, but again we assume them fixed for the moment.

If the prior distributions for the βgk’s are as in (3.9), the prior distribution of sg can be

found using the property of symmetric stable distributions:

sg ∼ N

(

0,

ng
∑

k=1

σ2
gk

)

or sg ∼ Cauchy

(

0,

ng
∑

k=1

σgk

)

(3.10)

Let us denote the density of sg in (3.10) by P s
g (either a Gaussian or Cauchy), and denote

s1, . . . , sG collectively by s. The posterior distribution can be written as follows:

P (s | D) =
1

c(D)
L(s1, . . . , sG) P s

1 (s1) · · · P s
g (sG) (3.11)

where D is the training data, and c(D) is the marginal probability or density function of D.

Since the likelihood function L(s1, . . . , sG) typically depends on s1, . . . , sG in a compli-

cated way, we may have to use some Markov chain sampling method to sample for s from

distribution (3.11).

3.3.2 Splitting Compressed Parameters

After we have obtained samples of sg, we may need to split them into their original compo-

nents βg1, . . . , βg,ng
to make predictions for test cases. This “splitting” distribution depends

only on the prior distributions, and is independent of the training dataD. In other words, the

splitting distribution is just the conditional distribution of βg1, . . . , βgng
given

∑ng

k=1 βgk = sg,
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whose density function is:

P (βg1, . . . , βg,ng−1 | sg) =

[

ng−1
∏

k=1

Pgk(βgk)

]

Pg,ng

(

sg −
ng−1
∑

k=1

βgk

)

/ P s
g (sg) (3.12)

where Pgk is the density function of the prior for βgk. Note that βg,ng
is omitted since it is

equal to sg −
∑ng−1

k=1 βgk.

As will be discussed in the Section 3.3.4, sampling from (3.12) can be done efficiently by a

direct sampling method, which does not involve costly evaluations of the likelihood function.

We need to use Markov chain sampling methods and evaluate the likelihood function only

when sampling for s. Figure 3.3 shows the sampling procedure after compressing parameters,

where β is a collective representation of βgk, for g = 1, . . . , G, k = 1, . . . , ng − 1. When we

consider high-order interactions, the number of groups, G, will be much smaller than the

number of βgk’s. This procedure is therefore much more efficient than applying Markov chain

sampling methods to all the original βgk parameters.

Furthermore, when making predictions for a particular test case, we actually do not

need to sample from the distribution (3.12), of dimension ng − 1, but only from a derived

1-dimensional distribution, which saves a huge amount of space.

Before discussing how to sample from (3.12), we first phrase this compressing-splitting

procedure more formally in the next section to show its correctness.

3.3.3 Correctness of the Compressing-Splitting Procedure

The above procedure of compressing and splitting parameters can be seen in terms of a

transformation of the original parameters βgk to a new set of parameters containing sg’s, as

defined in (3.7), in light of the training data. The posterior distribution (3.11) of s and the

splitting distribution (3.12) can be derived from the joint posterior distribution of the new

parameters.
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The invertible mappings from the original parameters to the new parameters are shown

as follows, for g = 1, . . . , G,

(βg1, . . . , βg,ng−1, βg,ng
) =⇒ (βg1, . . . , βg,ng−1,

ng
∑

k=1

βgk) = (βg1, . . . , βg,ng−1, sg) (3.13)

In words, the first ng − 1 original parameters βgk’s are mapped to themselves (we might use

another set of symbols, for example bgk, to denote the new parameters, but here we still

use the old ones for simplicity of presentation while making no confusion), and the sum of

all βg,k’s, is mapped to sg. Let us denote the new parameters βgk, for g = 1, . . . , G, k =

1, . . . , ng − 1, collectively by β, and denote s1, . . . , sg by s. (Note that β does not include

βg,ng
, for g = 1, . . . , G. Once we have obtained the samples of s and β we can use βg,ng

=

sg −
∑ng−1

k=1 βgk to obtain the samples of βg,ng
.)

The posterior distribution of the original parameters, βgk, is:

P (β11, . . . , βG,nG
| D) =

1

c(D)
L

(

n1
∑

k=1

β1k, . . . ,

nG
∑

k=1

βGk

)

G
∏

g=1

ng
∏

k=1

Pgk(βgk) (3.14)

By applying the standard formula for the density function of transformed random variables,

we can obtain from (3.14) the posterior distribution of the s and β:

P (s,β | D) =
1

c(D)
L (s1, . . . , sG)

G
∏

g=1

[

ng−1
∏

k=1

Pgk(βgk)

]

Pg,ng

(

sg −
ng−1
∑

k=1

βgk

)

| det(J)|(3.15)

where the | det(J)| is absolute value of the determinant of the Jacobian matrix, J , of the

mapping (3.13), which can be shown to be 1.

Using the additive property of symmetric stable distributions, which is stated in sec-

tion 3.3.1, we can analytically integrate out β in P (s,β | D), resulting in the marginal

distribution P (s | D):
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P (s | D) =

∫

P (s,β | D) dβ (3.16)

=
1

c(D)
L (s1, . . . , sG) ·

G
∏

g=1

∫

· · ·
∫

[

ng−1
∏

k=1

Pgk(βgk)

]

Pg,ng

(

sg −
ng−1
∑

k=1

βgk

)

dβg1 · · ·dβg,ng−1(3.17)

=
1

c(D)
L (s1, . . . , sG) P s

1 (s1) · · · P s
G(sG) (3.18)

The conditional distribution of β given D and s can then be obtained as follows:

P (β | s,D) = P (s,β | D) / P (s | D) (3.19)

=

G
∏

g=1

[

ng−1
∏

k=1

Pgk(βgk)

]

Pg,ng

(

sg −
ng−1
∑

k=1

βgk

)

/ P s
g (sg) (3.20)

From the above expression, it is clear that P (β | s,D) is unrelated to D, i.e., P (β | s,D) =

P (β | s), and is independent for different groups. Equation (3.12) gives this distribution

only for one group g.

3.3.4 Sampling from the Splitting Distribution

In this section, we discuss how to sample from the splitting distribution (3.12) to make

predictions for test cases after we have obtained samples of s1, . . . , sG.

If we sampled for all the βgk’s, storing them would require a huge amount of space when

the number of parameters in each group is huge. We therefore sample for β conditional

on s1, . . . , sG only temporarily, for a particular test case. As can be seen in Section 3.2.1

and 3.2.3, the predictive function needed to make prediction for a particular test case, for

example the probability that a test case is in a certain class, depends only on the sums of

subsets of βgk’s in groups. After re-indexing the βgk’s in each group such that the βg1, . . . , βg,tg

are those needed by the test case, the variables needed for making a prediction for the test

case are:
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st
g =

tg
∑

k=1

βgk , for g = 1, . . . , G, (3.21)

When tg = 0, st
g = 0, and when tg = ng, s

t
g = sg. The predictive function may also use some

sums of extra regression coefficients associated with the interaction patterns that occur in

this test case but not in training cases. Suppose the extra regression coefficients need to be

divided into Z groups, as required by the form of the predictive function, which we denote

by β∗11, . . . , β
∗
1,n∗1

, . . . , β∗Z,1, . . . , β
∗
Z,n∗

Z
. The variables needed for making prediction for the test

cases are:

s∗z =

n∗z
∑

k=1

β∗zk , for z = 1, . . . , Z (3.22)

In terms of the above variables, the function needed to make a prediction for a test case

can be written as

a





t1
∑

k=1

β1k, . . . ,

tG
∑

k=1

βGk,

n∗1
∑

k=1

β∗1k, . . . ,

n∗
Z
∑

k=1

β∗Zk



 = a(st
1, . . . , s

t
G, s

∗

1, . . . , s
∗

Z) (3.23)

Let us write st
1, . . . , s

t
G collectively as st, and write s∗1, . . . , s

∗
Z as s∗. The integral required

to make a prediction for this test case is

∫

a(st, s∗) P (s∗) P (s | D)

G
∏

g=1

P (st
g | sg) ds ds

tds∗. (3.24)

The integral over st is done by MCMC. We also need to sample for s∗ from P (s∗),

which is the prior distribution of s∗ given some hyperparameters (from the current MCMC

iteration) and can therefore be sampled easily. Finally, we need to sample from P (st
g | sg),

which can be derived from (3.12), shown as follows:

P (st
g | sg) = P (1)

g (st
g) P

(2)
g (sg − st

g) / P
s
g (sg) (3.25)
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where P
(1)
g and P

(2)
g are the priors (either Gaussian or Cauchy) of

∑tg
1 βgk and

∑ng

tg+1 βgk,

respectively. We can obtain (3.25) from (3.12) analogously as we obtained the density of

sg, that is, by first mapping β and s to a set of new parameters containing s and st,

then integrating away other parameters, using the additive property of symmetric stable

distributions. The distribution (3.25) splits sg into two components.

When the priors for the βgk’s are Gaussian distributions, the distribution (3.25) is also a

Gaussian distribution, given as follows:

st
g | sg ∼ N

(

sg
Σ2

1

Σ2
1 + Σ2

2

, Σ2
1

(

1 − Σ2
1

Σ2
1 + Σ2

2

))

(3.26)

where Σ2
1 =

∑tg
k=1 σ

2
gk and Σ2

2 =
∑ng

tg+1 σ
2
gk. Since (3.26) is a Gaussian distribution, we can

sample from it by standard methods.

When we use Cauchy distributions as the priors for the βgk’s, the density function of (3.25)

is:

P (st
g | sg) =

1

C

1

Σ2
1 + (st

g)
2

1

Σ2
2 + (st

g − sg)2
(3.27)

where Σ1 =
∑tg

k=1 σgk, Σ2 =
∑ng

tg+1 σgk, and C is the normalizing constant given below

by (3.29).

When sg = 0 and Σ1 = Σ2, the distribution (3.27) is a t-distribution with 3 degrees

of freedom, mean 0 and width Σ1/
√

3, from which we can sample by standard methods.

Otherwise, the cumulative distribution function (CDF) of (3.27) can be shown to be:

F (st
g ; sg,Σ1,Σ2) =

1

C

[

r log

(

(st
g)

2 + Σ2
1

(st
g − sg)2 + Σ2

2

)

+

p0

(

arctan

(

st
g

Σ1

)

+
π

2

)

+

ps

(

arctan

(

st
g − sg

Σ2

)

+
π

2

)]

(3.28)
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where

C =
π (Σ1 + Σ2)

Σ1Σ2 (s2
g + (Σ1 + Σ2)2)

, (3.29)

r =
sg

s4
g + 2 (Σ2

1 + Σ2
2) s

2
g + (Σ2

1 − Σ2
2)

2 , (3.30)

p0 =
1

Σ1

s2
g − (Σ2

1 − Σ2
2)

s4
g + 2 (Σ2

1 + Σ2
2) s

2
g + (Σ2

1 − Σ2
2)

2 , (3.31)

ps =
1

Σ2

s2
g + (Σ2

1 − Σ2
2)

s4
g + 2 (Σ2

1 + Σ2
2) s

2
g + (Σ2

1 − Σ2
2)

2 (3.32)

When sg 6= 0, the derivation of (3.28) uses the equations below from (3.33) to (3.35) as

follows, where p = (a2 − c)/b, q = b+ q, r = pc− a2q, and we assume 4c− b2 > 0,

1

x2 + a2

1

x2 + bx + c
=

1

r

(

x + p

x2 + a2
− x+ q

x2 + bx + c

)

(3.33)

∫ x

−∞

u+ p

u2 + a2
du =

1

2
log(x2 + a2) +

p

a
arctan

(x

a

)

+
π

2
(3.34)

∫ x

−∞

u+ q

u2 + bu+ c
du =

1

2
log(x2 + bx + c) +

2q − b√
4c− b2

arctan

(

2x + b√
4c− b2

)

+
π

2
(3.35)

When sg = 0, the derivation of (3.28) uses the following equations:

1

x2 + a2

1

x2 + b2
=

1

b2 − a2

(

1

x2 + a2
− 1

x2 + b2

)

(3.36)

∫ x

−∞

1

u2 + a2
du =

1

a

(

arctan
(x

a

)

+
π

2

)

(3.37)

Since we can compute the CDF of (3.27) with (3.28) explicitly, we can use the inversion

method to sample from (3.27), with the inverse CDF computed by some numerical method.

We chose the Illinois method (Thisted 1988, Page 171), which is robust and fairly fast.

When sampling for st
1, . . . , s

t
G temporarily for each test case is not desired, for example,

when we need to make predictions for a huge number of test cases at a time, we can still

apply the above method that splits a Gaussian or Cauchy random variable into two parts
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ng − 1 times to split sg into ng parts. Our method for compressing parameters is still useful

because sampling from the splitting distributions uses direct sampling methods, which are

much more efficient than applying Markov chain sampling method to the original parameters.

However, we will not save space if we take this approach of sampling for all β’s.

3.4 Application to Sequence Prediction Models

In this section, we show how to compress parameters of logistic sequence prediction models

in which states of a sequence are discrete, as defined in Section 3.2.1. To demonstrate our

method, we use a binary data set generated using a hidden Markov model, and a data set

created from English text, in which each state has 3 possibilities (consonant, vowel, and

others). These experiments show that our compression method produces a large reduction

in the number of parameters needed for training the model, when the prediction for the next

state of a sequence is based on a long preceding sequence, i.e., a high-order model. We also

show that good predictions on test cases result from being able to use a high-order model.

3.4.1 Grouping Parameters of Sequence Prediction Models

In this section, we describe a scheme for dividing the β’s into a number of groups, based on

the training data, such that the likelihood function depends only on the sums in groups, as

shown by (3.8).

Since the linear functions for different values of response have the same form except the

superscript, the way we divide β(k) into groups is the same for all k. Our task is to find the

groups of interaction patterns expressed by the same training cases.

Let us use EP to denote the “expression” of the pattern P — the indices of training

cases in which P is expressed, a subset of 1, . . . , N . For example, E[0···0] = {1, . . . , N}. In

other words, the indicator for pattern P has value 1 for the training cases in EP , and 0 for
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others. We can display EP in a tree-shape, as we displayed βP . The upper part of Figure 3.4

shows such expressions for each pattern of binary sequence of length O = 3, based on 3

training cases: x
(1)
1:3 = (1, 2, 1),x

(2)
1:3 = (2, 1, 2) and x

(3)
1:3 = (1, 1, 2). From Figure 3.4, we can

see that the expression of a “stem” pattern is equal to the union of the expressions of its

“leaf” patterns, for example, E[000] = E[001]

⋃

E[002] .

When a stem pattern has only one leaf pattern with non-empty expression, the stem and

leaf patterns have the same expression, and can therefore be grouped together. This grouping

procedure will continue by taking the leaf pattern as the new stem pattern, until encountering

a stem pattern that “splits”, i.e. has more than one leaf pattern with non-empty expression.

For example, E[001], E[021] and E[121] in Figure 3.4 can be grouped together. All such patterns

must be linked by lines, and can be represented collectively with a “superpattern” SP ,

written as [0 · · · 0Ab · · ·AO]f =
⋃b

t=f [0 · · · 0At · · ·AO], where 1 ≤ b ≤ f ≤ O + 1, and

in particular when t = O + 1, [0 · · ·0At · · ·AO] = [0 · · · 0]. One can easily translate the

above discussion into a computer algorithm. Figure 3.5 describes the algorithm for grouping

parameters of Bayesian logistic sequence prediction models, in a C-like language, using a

recursive function.

An important property of our method for compressing parameters of sequence prediction

models is that given N sequences as training data, conceivably of infinite length, denoted by

x
(i)
−∞, . . . , x

(i)
−1, for i = 1, . . . , N , the number of superpatterns with unique expressions, and

accordingly the number of compressed parameters, will converge to a finite number as O

increases. The justification of this claim is that if we keep splitting the expressions following

the tree shown in Figure 3.4, at a certain time, say t, every expression will be an expression

with only 1 element (suppose we in advance remove the sequences that are identical with

another one). When considering further smaller t, no more new superpattern with different

expressions will be introduced, and the number of superpatterns will not grow. The number

of the compressed parameters, the regression coefficients for the superpatterns, will therefore
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1

2

3

After Grouping

 

= φ[122]E

= {3}[112]

=[012]E

= φ[022]E

=

4
{1,2,3}[000]E =

{2,3}

1 2 1

1 2

1 2

1

2 

Training Cases

i

Ε

= {2,3}[002]E

= {1}[001]E

= φ[111]

= φ[211]E

= {1}[121]E

= φ[221]E

= {2}[212]E

= φ[222]E

= {1,2,3}[000]E

[121]E {1}=
3

E {2,3}
3[012]

[112]E {3}=1

E {2}=[212]1

= φE[011]

= {1}[021]E

E 1 2 3x xx

Figure 3.4: A picture showing that the interaction patterns in logistic sequence prediction
models can be grouped, illustrated with binary sequences of length O = 3, based on 3 training
cases shown in the upper-right box. EP is the expression of the pattern (or superpattern) P
— the indices of the training cases in which the P is expressed, with φ meaning the empty
set. We group the patterns with the same expression together, re-represented collectively
by a “superpattern”, written as [0 · · ·0Ab · · ·AO]f , meaning

⋃f
t=b [0 · · ·0At · · ·AO], where

1 ≤ b ≤ f ≤ O + 1, and in particular when t = O + 1, [0 · · ·0At · · ·AO] = [0 · · ·0]. We also
remove the patterns not expressed by any of the training cases. Only 5 superpatterns with
unique expressions are left in the lower picture.
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[b]  = the unique value in X[E] [b]SP.P

X: training data, N    O matrix

LSP: list of superpatterns

LE:  list of expressions

SP: superpattern,  structure with members
−−− P: pattern, vector of length O

−−− f : index of  fixed state  in P

}

b = b − 1

{

if( b > 0 )

{

}

}

}

{

DIVERGE(E, SP)

b = SP.f − 1 

{

for(  x in unique values in X[E][b] ) 

O: length of sequences

N: number of training cases 

Add SP to LSP

Add E to LE

while ( # of unique values in  X[E][b] is 1 & b >0)

INPUTS:

OUTPUTS: 

E:  expression, subset of 1, ... ,N  

INPUTS of ‘DIVERGE’(shown on the right):

ALGORITHM:

SP.f = O + 1,  SP.P=(0 , ... ,0)

E = {1, ... ,N}

LSP = NULL

LE = NULL

DIVERGE(E,SP)

RETURN LE and LSP

Set NSP = SP

DIVERGE(SubE, NSP)

SubE = {i in E : X[i][b] = x}

NSP.f = b , NSP.P[b] = x

Figure 3.5: The algorithm for grouping parameters of Bayesian logistic sequence prediction
models. To group parameters, we call function “DIVERGE” with the initial values of ex-
pression E = {1, . . . , N} and superpattern SP = [0 . . . 0]O+1, as shown in above picture,
resulting in two lists of the same length, LE and LSP, respectively storing the expressions
and the corresponding superpatterns. Note that the first index of an array is assumed to be
1, and that the X[E][b] means a 1-dimension subarray of X in which the row indices are in
E and the column index equals b.
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not grow after the time t.

In contrast, after the time t when each interaction pattern is expressed by only 1 training

case, if the order is increased by 1, the number of interaction patterns is increased by the

number of training cases. The regression coefficients associated with these original inter-

action patterns, called the original parameters thereafter, will grow linearly with the order

considered. Note that these original parameters do not include the regression coefficients for

those interaction patterns not expressed by any training case. The total number of regression

coefficients defined by the model grows exponentially with the order considered.

3.4.2 Making Prediction for a Test Case

Given β(1), . . . ,β(K), the predictive probability for the next state x∗
O+1 of a test case for

which we know the historic sequence x∗
1:O can be computed using equation (3.1), applied to

x∗
1:O. A Monte Carlo estimate of P (x∗O+1 = k | x∗

1:O,D) can be obtained by averaging (3.1)

over the Markov chain samples from the posterior distribution of β(1), . . . ,β(K).

Each of the O + 1 patterns expressed by the test case x∗
1:O is either expressed by some

training case (and therefore belongs to one of the superpatterns), or is a new pattern (not

expressed by any training case). Suppose we have found γ superpatterns. The O + 1 β’s in

the linear function l(x∗
1:O, β

(k)) can accordingly be divided into γ + 1 groups (some groups

may be empty). The function l(x∗
1:O, β

(k)) can be written as the sum of the sums of the

β’s over these γ + 1 groups. Consequently, P (x∗O+1 = k | x∗
1:O) can be written in the form

of (3.23). As discussed in Section 3.3.4, we need to only split the sum of the β’s associated

with a superpattern, i.e., a compressed parameter sg, into two parts, such that one of them

is the sum of those β expressed by the test case x∗
1:O, using the splitting distribution (3.25).

It is easy to identify the patterns that are also expressed by x∗
1:O from a superpattern

[0 · · ·Ab · · ·AO]f . If (x∗f , . . . , x
∗
O) 6= (Af , . . . , AO), none of the patterns in [0 · · ·Ab · · ·AO]f

are expressed by x∗
1:O, otherwise, if (x∗b′ , . . . , x

∗
O) = (Ab′, . . . , AO) for some b′ (b ≤ b′ ≤ f), all
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patterns in [0 · · ·Ab′ · · ·AO]f are expressed by x∗
1:O.

3.4.3 Experiments with a Hidden Markov Model

In this section we apply Bayesian logistic sequence prediction modeling, with or without our

compression method, to data sets generated using a Hidden Markov model, to demonstrate

our method for compressing parameters. The experiments show that when the considered

length of the sequence O is increased, the number of compressed parameters will converge

to a fixed number, whereas the number of original parameters will increase linearly. Our

compression method also improves the quality of Markov chain sampling in terms of auto-

correlation. We therefore obtain good predictive performances in a small amount of time

using long historic sequences.

The Hidden Markov Model Used to Generate the Data

Hidden markov models (HMM) are applied widely in many areas, for example, speech recog-

nition (Baker 1975), image analysis (Romberg et.al. 2001), computational biology (Sun

2006). In a simple hidden Markov model, the observable sequence {xt | t = 1, 2, . . .} is mod-

eled as a noisy representation of a hidden sequence {ht | t = 1, 2, . . .} that has the Markov

property (the distribution of ht given ht−1 is independent with the previous states before

ht−1). Figure 3.6 displays the hidden Markov model used to generate our data sets, showing

the transitions of three successive states. The hidden sequence ht is an Markov chain with

state space {1, . . . , 8}, whose dominating transition probabilities are shown by the arrows in

Figure 3.6, each of which is 0.95. However, the hidden Markov chain can move from any state

to any other state as well, with some small probabilities. If ht is an even number, xt will be

equal to 1 with probability 0.95 and 2 with probability 0.05, otherwise, xt will be equal to 2

with probability 0.95 and 1 with probability 0.05. The sequence {xt | t = 1, 2, . . .} generated

by this exhibits high-order dependency, though the hidden sequence is only a Markov chain.
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We can see this by looking at the transitions of observable xt in Figure 3.6. For example, if

x1 = 1 (rectangle) and x2 = 2 (oval), it is most likely to be generated by h1 = 2 and h2 = 3,

since this is the only strong connection from the rectangle to the oval, consequently, h3 = 8

is most likely to to be the next, and x3 is therefore most likely to be 1 (rectangle).

h1 h2 h3

2

4

6

8

2

4

6

8

2

4

6

8

1

3

5

7

1

3

5

7

1

3

5

7

... ... 

Figure 3.6: A picture showing a Hidden Markov Model, which is used to generate sequences
to demonstrate Bayesian logistic sequence prediction models. Only the dominating transition
probabilities of 0.95 are shown using arrows in the above graph, while from any state the
hidden Markov chain can also move to any other state with a small probability. When ht is
in a rectangle, xt is equal to 1 with probability 0.95, and 2 with probability 0.05, otherwise,
when ht is in an oval, xt is equal to 2 with probability 0.95, and 1 with probability 0.05.

3.4.4 Specifications of the Priors and Computation Methods

The Priors for the Hyperprameters

We fix σ0 at 5 for the Cauchy models and 10 for the Gaussian models. For o > 0, the prior

for σo is Inverse Gamma(αo, (αo + 1)wo), where αo and wo are:
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αo = 0.25, wo = 0.1/o, for o = 1, . . . , O (3.38)

The quantiles of Inverse-Gamma(0.25, 1.25× 0.1), the prior of σ1, are shown as follows:

p 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

q 0.05 0.17 0.34 0.67 1.33 2.86 7.13 22.76 115.65 1851.83 1.85× 107

The quantiles of other σo can be obtained by multiplying those of σ1 by 1/o.

The Markov Chain Sampling Method

We use Gibbs sampling to sample for both the sg’s (or the βgk’s when not applying our

compression method) and the hyperparameters, σo. These 1-dimensional conditional distri-

butions are sampled using the slice sampling method (Neal 2003), summarized as follows.

In order to sample from a 1-dimensional distribution with density f(x), we can draw points

(x, y) from the uniform distribution over the set {(x, y) | 0 < y < f(x)}, i.e., the region of

the 2-dimensional plane between the x-axis and the curve of f(x). One can show that the

marginal distribution of x drawn this way is f(x). We can use Gibbs sampling scheme to

sample from the uniform distribution over {(x, y) | 0 < y < f(x)}. Given x, we can draw y

from the uniform distribution over {y | 0 < y < f(x)}. Given y, we need to draw x from the

uniform distribution over the “slice”, S = {x | f(x) > y}. However, it is generally infeasible

to draw a point directly from the uniform distribution over S. (Neal 2003) devises several

Markov chain sampling schemes that leave this uniform distribution over S invariant. One

can show that this updating of x along with the previous updating of y leaves f(x) invariant.

Particularly we chose the “stepping out” plus “shrinkage” procedures. The “stepping out”

scheme first steps out from the point in the previous iteration, say x0, which is in S, by

expanding an initial interval, I, of size w around x0 on both sides with intervals of size w,

until the ends of I are outside S, or the number of steps has reached a pre-specified number,

m. To guarantee correctness, the initial interval I is positioned randomly around x0, and
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m is randomly aportioned for the times of stepping right and stepping left. We then keep

drawing a point uniformly from I until obtaining an x in S. To facilitate the process of

obtaining an x in S, we shrink the interval I if we obtain an x not in S by cutting off the

left part or right part of I depending on whether x < x0 or x > x0.

We set w = 20 when sampling for β’s if we use Cauchy priors, considering that there might

be two modes in this case, and set w = 10 if we use Gaussian priors. We set w = 1 when

sampling for σo. The value of m is 50 for all cases. We trained the Bayesian logistic sequence

model, with the compressed or the original parameters, by running the Markov chain 2000

iterations, each updating the β’s 1 time, and updating the σ’s 10 times, both using slice

sampling. The first 750 iterations were discarded, and every 5th iteration afterward was

used to predict for the test cases. The number of 750 was chosen empirically after looking

at many trial runs of Markov chains for many different circumstances.

The above specification of Markov chain sampling and the priors for the hyperparameters

will be used for all experiments in this chapter, including the experiments on classification

models discussed in Section 3.5.

Experiment Results

We used the HMM in Figure 3.6 to generate 5500 sequences with length 21. We used 5000

sequences as test cases, and the remaining 500 as the training cases. We tested the prediction

methods by predicting x21 based on varying numbers of preceding states, O, chosen from

the set {1, 2, 3, 4, 5, 7, 12, 15, 17, 20}.

Figure 3.7 compares the number of parameters and the times used to train the model, with

and without our compression method. It is clear that our method for compressing parameters

reduces greatly the number of parameters. The ratio of the number of compressed parameters

to the number of the original ones decreases with the number of preceding states, O. For

example, the ratio reaches 0.207 when O = 20. This ratio will reduce to 0 when considering
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even bigger O, since the number of original parameters will grow with O while the number

of compressed parameters will converge to a finite number, as discussed in Section 3.4.1.

There are similar reductions for the training times with our compression method. But the

training time with compressed parameters will not converge to a finite amount, since the time

used to update the hyperparameters (σo’s) grows with order, O. Figure 3.7 also shows the

prediction times for 5000 training cases. The small prediction times show that the methods

for splitting Gaussian and Cauchy variables are very fast. The prediction times grow with

O because the time used to identify the patterns in a superpattern expressed by a test case

grows with O. The prediction times with the original parameters are not shown in Figure 3.7,

since we do not claim that our compression method saves prediction time. (If we used the

time-optimal programming method for each method, the prediction times with compressed

parameters should be more than without compressing parameters since the method with

compression should include times for identifying the patterns from the superpattern for test

cases. With our software, however, prediction times with compression are less than without

compression, which is not shown in Figure 3.7, because the method without compression

needs to repeatedly read a huge number of the original parameters into memory from disk.)

Compressing parameters also improves the quality of Markov chain sampling. Figure 3.8

shows the autocorrelation plots of the hyperparameters σo, for o = 10, 12, 15, 17, 20, when

the length of the preceding sequence, O, is 20. It is clear that the autocorrelation decreases

more rapidly with lag when we compress the parameters. This results from the compressed

parameters capturing the important directions of the likelihood function (i.e. the directions

where a small change can result in large a change of the likelihood). We did not take the time

reduction from compressing parameters into consideration in this comparison. If we rescaled

the lags in the autocorrelation plots according to the computation time, the reduction of

autocorrelation of Markov chains with the compressed parameters would be much more

pronounced.
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Figure 3.7: Plots showing the reductions of the number of parameters and the training time
with our compression method using the experiments on a data set generated by a HMM. The
upper-left plot shows the number of the compressed and the original parameters based on
500 training sequences for O = 1, 2, 3, 4, 5, 7, 10, 12, 15, 17, 20, their ratios are shown in the
upper-right plot. In the above plots, the lines with ◦ are for the methods with parameters
compressed, the lines with × are for the methods without parameters compressed, the dashed
lines are for the methods with Gaussian priors, and the dotted lines are for the methods with
Cauchy priors. The lower-left plot shows the training times for the methods with and without
parameters compressed. The lower-right plot shows the prediction time only for the methods
with parameters compressed.
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Figure 3.8: The autocorrelation plots of σo’s for the experiments on a data set generated by
a HMM, when the length of the preceding sequence O = 20. We show the autocorrelations
of σo, for o = 10, 12, 15, 17, 20. In the above plots, “Gaussian” in the titles indicates the
methods with Gaussian priors, “Cauchy” indicates with Cauchy priors, “comp” indicates
with parameters compressed, “no comp” indicates without parameters compressed.
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Figure 3.9: Plots showing the predictive performance using the experiments on a data set
generated by a HMM. The left plots show the error rates and the right plots show the
average minus log probabilities of the true responses in the test cases. The upper plots
show the results when using the Cauchy priors and the lower plots shows the results when
using the Gaussian priors. In all plots, the lines with ◦ are for the methods with parameters
compressed, the lines with × are for the methods without parameters compressed. The
numbers of the training and test cases are respectively 500 and 5000. The number of classes
of the response is 2.
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Finally, we evaluated the predictive performance in terms of error rate (the fraction of

wrong predictions in test cases), and the average minus log probability (AMLP) of observing

the true response in a test case based on the predictive probability for different classes. The

performance of with and without compressing parameters are the same, as should be the

case in theory, and will be in practice when the Markov chains for the two methods converge

to the same modes. Performance of methods with Cauchy and Gaussian priors is also similar

for this example. The predictive performance is improved when O goes from 1 to 5. When

O > 5 the predictions are slightly worse than with O = 5 in terms of AMLP. The error

rates for O > 5 are almost the same as for O = 5. This shows that the Bayesian models

can perform reasonably well even when we consider a very high order, as they avoid the

overfitting problem in using complex models. We therefore do not need to restrict the order

of the Bayesian sequence prediction models to a very small number, especially after applying

our method for compressing parameters.

3.4.5 Experiments with English Text

We also tested our method using a data set created from an online article from the website

of the Department of Statistics, University of Toronto. In creating the data set, we encoded

each character as 1 for vowel letters (a,e,i,o,u), 2 for consonant letters, and 3 for all other

characters, such as space, numbers, special symbols, and we then collapsed multiple occur-

rences of “3” into only 1 occurrence. The length of the whole sequence is 3930. Using it we

created a data set with 3910 overlaped sequences of length 21, and used the first 1000 as

training data.

The experiments were similar to those in Section 3.4.3, with the same priors and the

same computational specifications for Markov chain sampling. Figures 3.10, 3.11, 3.12, and

3.13 show the results. All the conclusions drawn from the experiments in Section 3.4.3 are

confirmed in this example, with some differences in details. In summary, our compression
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Figure 3.10: Plots showing the reductions of the number of parameters and the training and
prediction time with our compression method using the experiments on English text. The
upper-left plot shows the number of the compressed and the original parameters based on
500 training sequences for O = 1, 2, 3, 4, 5, 7, 10, 12, 15, 17, 20, their ratios are shown in the
upper-right plot. In the above plots, the lines with ◦ are for the methods with parameters
compressed, the lines with × are for the methods without parameters compressed, the dashed
lines are for the methods with Gaussian priors, and the dotted lines are for the methods with
Cauchy priors. The lower-left plot shows the training times for the methods with and without
parameters compressed. The lower-right plot shows the prediction time only for the methods
with parameters compressed.
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Figure 3.11: The autocorrelation plots of the σo’s for the experiments on English text data,
when the length of the preceding sequence O = 20. We show the autocorrelation plot
of σo, for o = 10, 12, 15, 17, 20. In the above plots, “Gaussian” in the titles indicates the
methods with Gaussian priors, “Cauchy” indicates with Cauchy priors, “comp” indicates
with parameters compressed, “no comp” indicates without parameters compressed.
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Figure 3.12: Plots showing the predictive performance using the experiments on English
text data. The left plots show the error rate and the right plots show the average minus log
probability of the true response in a test case. The upper plots show the results when using
the Cauchy priors and the lower plots shows the results when using the Gaussian priors. In
all plots, the lines with ◦ are for the methods with parameters compressed, the lines with ×
are for the methods without parameters compressed. The numbers of the training and test
cases are respectively 1000 and 2910. The number of classes of the response is 3.
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Figure 3.13: Scatterplots of medians of all compressed parameters, s, of Markov chain sam-
ples in the last 1250 iterations, for the models with Cauchy and Gaussian priors, fitted with
English text data, with the length of preceding sequence O = 10, and with the parameters
compressed. The right plot shows in a larger scale the rectangle (−2, 2)× (−2, 2).

method reduces greatly the number of parameters, and therefore shortens the training process

greatly. The quality of Markov chain sampling is improved by compressing parameters.

Prediction is very fast using our splitting methods. The predictions on the test cases are

improved by considering higher order interactions. From Figure 3.12, at least some order 10

interactions are useful in predicting the next character.

In this example we also see that when Cauchy priors are used Markov chain sampling with

the original parameters may have been trapped in a local mode, resulting in slightly worse

predictions on test cases than with the compressed parameters, even though the models used

are identical.

We also see that the models with Cauchy priors result in better predictions than those

with Gaussian priors for this data set, as seen from the plots of error rates and AMLPs. To

investigate the difference of using Gaussian and Cauchy priors, we first plotted the medians
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Figure 3.14: Plots of Markov chain traces of three compressed parameters (each contains only
one β) from experiments on English text with 10 preceding states, with Cauchy or Gaussian
priors. In each plot, three different lines show three indepedent runs. The parameters are
annotated by their original meanings in English sequence. For example, ‘ CC:V’ stands
for the parameter for predicting that the next character is a “vowel” given preceding three
characters are “space, consonant, consonant”.
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of Markov chains samples (in the last 1250 iterations) of all compressed parameters, s, for

the model with O = 10, shown in Figure 3.13, where the right plot shows in a larger scale

the rectangle (−2, 2) × (−2, 2). This figure shows that a few β with large medians in the

Cauchy model have very small corresponding medians in the Gaussian model.

We also looked at the traces of some compressed parameters, as shown in Figure 3.14.

The three compressed parameters shown all contain only a single β. The plots on the top

are for the β for “CC:V”, used for predicting whether the next character is a vowel given the

preceding two characters are consonants; the plots in the middle are for “ CC:V”, where

“ ” denotes a space or special symbol; the plots on the bottom are for “CCVCVCC:V”,

which had the largest median among all compressed parameters in the Cauchy model, as

shown by Figure 3.13. The regression coefficient β for “CC:V” should be close to 0 by our

common sense, since two consonants can be followed by any of three types of characters.

We can very commonly see “CCV”, such as “the”, and “CC ”, such as “with ”, and not

uncommonly see “CCC”, such as “technique”,“world”, etc. The Markov chain trace of this β

with a Cauchy prior moves in a smaller region around 0 than with a Gaussian prior. But if we

look back one more character, things are different. The regression coefficient β for “ CC:V”

is fairly large, which is not surprising. The two consonants in “ CC:V” stand for two letters

in the beginning of a word. We rarely see a word starting with three consonants or a word

consisting of only two consonants. The posterior distribution of this θ for both Cauchy and

Gaussian models favor positive values, but the Markov chain trace for the Cauchy model

can move to much larger values than for the Gaussian model. As for the high-order pattern

“CCVCVCC”, it matches words like “statistics” or “statistical”, which repeatedly appear in

an article introducing a statistics department. Again, the Markov chain trace of this β for

the Cauchy model can move to much larger values than for Gaussian model, but sometimes

it is close to 0, indicating that there might be two modes for its posterior distribution.

The above investigation reveals that a Cauchy model allows some useful β to be much
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larger in absolute value than others while keeping the useless β in a smaller region around

0 than a Gaussian model. In other words, Cauchy models are more powerful in finding the

information from the many possible high-order interactions than Gaussian models, due to

the heavy two-sided tails of Cauchy distributions.

3.5 Application to Logistic Classification Models

3.5.1 Grouping Parameters of Classification Models

As we have seen in sequence prediction models, the regression coefficients for the patterns

that are expressed by the same training cases can be compressed into a single parameter.

We present an algorithm to find such groups of patterns. Our algorithm may not the only

one possible and may not be the best.

Our algorithm uses a “superpattern”, SP , to represent a set of patterns with some

common property, written as
(

A1 . . . Ap

I1 . . . Ip

)o

f
, where At is the pattern value for position t

(an integer from 0 to Kt), It is binary (0/1) with 1 indicating At is fixed for this superpattern,

f is the number of fixed positions (ie f =
∑p

t=1 It), and o indicates the smallest order of all

patterns in this superpattern, equal to the sum of nonzero values of those At with It = 1

(i.e. o =
∑

t=1 I(It = 1, At 6= 0)). Such a superpattern represents the union of all patterns

with order not greater than O, with values at the fixed positions (with It = 1) being At,

but the pattern values at unfixed positions (with It = 0) being either 0 or At. For example,

if O = 3, the superpattern
(

12304

10010

)1

2
is composed of

(

3

0

)

,
(

3

1

)

, and
(

3

2

)

patterns

respectively of order 1, 2 and 3, listed as follows:

order 1 : [10000]

order 2 : [12000], [10300], [10004]

order 3 : [10304], [12004], [12300]

(3.39)
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The algorithm is inspired by the display of all interaction patterns in Figure 3.2. It starts

with the expression {1, . . . , N} for the superpattern
(

00 . . . 0

11 . . . 1

)0

p
, and the unconsidered

features (1, . . . , p). After choosing a feature xt from the unconsidered features by the way

described below, the current expression is split for each value of the xt, as done by the

algorithm for sequence prediction models, additionally the whole expression is also passed

down for the pattern with At = 0. When we see that we can not split the expression by

any of the unconsidered features, all the following patterns can be grouped together and

represented with a superpattern. In Figure 3.15, we use training data with 3 binary features

and only 3 cases to illustrate the algorithm. We give the algorithm in a C-like language in

Figure 3.16, which uses a recursive function.

In choosing a feature for splitting a expression, we look at the diversity of the values of

the unconsidered features restricted on the current expression. By this way the expression

is split into more expressions but each may be smaller. We therefore more rapidly reach

the expression that can not be split further. The diversity of a feature xt restricted on the

current expression is measured with the entropy of the relative frequency of the values of xt,

i.e., −
∑

i pi log(pi), where pi’s are the relative frequency of the possible values of the feature

restricted on the expression. When two features have the same entropy value, we choose the

one with smaller index t. Note that the entropy is always positive unless all the values of

the feature xt restricted on the expression are the same. The resulting expressions found by

this algorithm are not unique for each superpattern.

In training the model, we need to compute the width of a parameter associated with a

superpattern given the values of the hyperparameters σo’s. For Cauchy models, the width is

equal to the sum of the hyperparameters of all patterns in the superpattern. For Gaussian

models, the width is the square roots of the sum of the squares of the hyperparameters of all

patterns in the superpattern. We therefore need only know the number of the patterns in

the superpattern belonging to each order from 0 to O. For a superpattern
(

A1 . . . Ap

I1 . . . Ip

)o

f
,
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Training Cases
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Figure 3.15: This picture illustrates the algorithm for grouping the patterns of classification
models using a training data of 3 binary features and 3 cases shown on the left-top corner.
Starting from the expression for the intercept and all features in the unconsidered features
set, we recursively split the current expression by the values of the feature with the biggest
entropy (diversity) among the remaining unconsidered features. When the values of all
remaining unconsidered features are the same for all training cases, for example, when the
expression contains only one training case, all the following patterns can be grouped together.
After grouping, all the expressions in dashed box are removed and grouped into their parent
expressions, with the group of patterns being represented using a superpattern.
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Add NSP to LSP, Add E to LE

0 0 ... 0
1 1 ... 1( )

ALGORITHM:

E = {1, ... ,N}

SP: o = 0, f=p, P=

LSP = NULL

LE = NULL

FT = (1,2,...,p)

{

INPUTS:

N: number of training cases 

p: number of features

DIVERGE(E, SP,FT)

{

find the entropies of each column  of X[E][FT]

Create new NSP, Set NSP= SP

NSP.P[FT] = X[E[1]][FT], NSP.f −= # of FT

}

else

if(M == 0)

{
if(# of SubFT == 0)

else DIVERGE(E,SP,SubFT) 
{Add SP to LSP, Add E to LE}

SubFT = FT with mFT removed

for(x in unique values of X[E][mFT])
{

NSP.P[mFT] = x, NSP.o ++
SubE = {i in E | X[i][mFT] =x}

{Add SP to LSP, Add SubE to LE}

}
}

else DIVERGE(subE,NSP,subFT)

if(# of SubFT == 0 || NSP.o == O)

M = the biggest entropy  
mFT = index of the feature with entropy=M 

}

X: training data, N    p matrix

OUTPUTS: 

LSP: list of superpatterns
LE:  list of expressions

INPUTS of ‘DIVERGE’ (shown on the right):

E:  expression, subset of 1, ... ,N  

SP: superpattern,  structure with members

−−− o: smallest order
FT: indice of unconsidered features

−−− f : number of fixed positions

DIVERGE(E,SP,FT)

RETURN LSP and LE

O: the order of the model (<=p)

−−− P: pattern, array of 2     p

Set NSP=SP

Figure 3.16: The algorithm for grouping the patterns of Bayesian logistic classification mod-
els. To do grouping, we call the function “DIVERGE” with the initial values of expression
E, superpattern SP and the unconsidered features FT shown as above, resulting in two lists
of the same length, LE and LSP, respectively storing the expressions and the corresponding
superpatterns. Note that the first index of an array are assumed to be 1, and thatX[E][FT ]
means sub matrix of X by restricting the rows in E and columns in FT . 3) The resulting
expressions are not unique for each superpattern in LSP . We still need to merge those
superpatterns with the same expression by directly comparing the expressions.
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they are given as follows:

#(patterns of order o+ d) =



















(

p− f

d

)

, for d = 0, . . . ,min(O − o, p− f)

0, Otherwise

(3.40)

In predicting for a test case x∗, we need to identify the patterns in a superpattern
(

A1 . . . Ap

I1 . . . Ip

)o

f
that is also expressed by x∗. If At 6= x∗t for any t with It = 1 and At 6= 0,

none of the patterns in the superpatterns are expressed by x∗. Otherwise, if x∗t 6= At for any

unfixed positions (with It = 0) then the At is set to 0. This results in a smaller superpattern,

from which we can count the number of patterns belonging to each order using the formula

in (3.40).

For a fixed very large number of features, p, and a fixed number of cases, N , the number

of the compressed parameters may have converged before considering the highest possible

order, p. This can be verified by regarding the interaction patterns of a classification model as

the union (non-exclusive) of the interaction patterns of p! sequence models from permutating

the indice of features. As shown for sequence models in Section 3.4.1, there is a certain order

Oj, for j = 1, . . . , p!, for each of the p! sequence models, the number of superpatterns with

unique expressions will not grow after considering order higher than Oj. The number of

the superpatterns with unique expressions for all p! sequence models will not grow after we

consider the order higher than the maximum value of Oj, for j = 1, . . . , p!. If this maximum

value is smaller than p, the number of the compressed parameters converges before considering

the highest possible order, p. On the contrary, the number of the original parameters (the

regression coefficients for those interaction patterns expressed by some training case) will

keep growing until considering the highest order, p.
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3.5.2 Experiments Demonstrating Parameter Reduction

In this section, we use simulated data sets to illustrate our compression method. We apply

our compression method to many training data sets with different properties to demonstrate

how the rate of parameters reduction and the number of compressed parameters depend on

the properties of the data, but without running MCMC to train the models and assessing

the predictive performance with test cases.

We generated data sets with varying dimension p, and number of possibilities of each

feature, K, the same for all p features. We consider varying order, O. In all datasets, the

values of features are drawn uniformly from the set {1, . . . , K}, with the number of training

cases N = 200. We did three experiments, in each of which two of the three values p,K and

O are fixed, with the remaining one varied to see how the performance of the compression

method changes. The values of p,K and O and the results are shown in Figure 3.17.

From Figure 3.17, we can informally assess the performance of our compression method

in different situations. First, when p and O are fixed, as shown by the top plots, the num-

ber of compressed parameters decreases with increasing K, but the number of the original

parameters does not, showing that our compression method is more useful when K is large,

in other words, when K is larger, more patterns that do not need to be represented explic-

itly will exist. Note, however, that this does not mean the predictive performance for large

K is better. On the contrary, when K is larger, each pattern will be expressed by fewer

training cases, possibly leading to worse predictive performance. Second, as shown by the

middle plots where O and K are fixed, the numbers of both the original parameters and

the compressed parameters increase very quickly with p, but their ratio decreases with p.

In the bottom plots with fixed p and K, the number of the original parameters increases

with O but at a much slower rate than with p. The number of compressed parameters have

converged when O = 4, earlier than O = 7.
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Figure 3.17: Plots of the number of the compressed parameters (the lines with ◦) and the
original parameters (the lines with×), in log scale, their ratios (the lines with4) for Bayesian
logistic classification models. The number of training cases is 200 for all data sets. The titles
and the horizontal axis labels indicates the values of p,K and O in compressing parameters,
where p is the number of features, K is the number of possibilities of each feature, and O is
the order of interactions considered .
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3.5.3 Experiments with Data from Cauchy Models

We tested the Bayesian logistic classification models on a data set generated using the true

model defined in Section 3.2.3. The number of features, p, is 7, and each feature was drawn

uniformly from {1, 2, 3}. For generating the responses, we consider only the interactions from

order 0 to order 4, we let σo = 1/o, for o = 1, . . . , 4, then generated regression coefficients β’s

from Cauchy distributions, as shown by (3.3), except fixing the intercept at 0. We generated

5500 cases, of which 500 were used as training cases and the remainder as test cases. We

did experiments with and without the parameters compressed, for order O = 1, . . . , 7.

From these experiments, we see that our compression method can reduce greatly the

number of parameters and therefore saves a huge amount of time for training the models with

MCMC. The number of the compressed parameters does not grow any more after considering

O = 4, earlier than O = 7. After compressing the parameters, the quality of Markov chain

sampling is improved, seen from Figure 3.19, where 5 out of 6 experiments show that the

autocorrelation of the σo decreases more rapidly with lag after compressing parameters. The

predictive performance with and without the parameters compressed are similar, with the

optimal performance obtained from the Cauchy model with order O = 4, as is expected

since this is the true model generating the data set. From the left plot of Figure 3.21, we

see that a Cauchy model allows some β to be much larger than others, whereas a Gaussian

model keeps all of β in a small region. For those truly small β, Cauchy priors can keep them

smaller than Gaussian priors can, as shown by the right plot of Figure 3.21.

3.6 Conclusion and Discussion

In this chapter, we have proposed a method to effectively reduce the number of parameters

of Bayesian regression and classification models with high-order interactions, using a com-

pressed parameter to represent the sum of all the regression coefficients for the predictor
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Figure 3.18: Plots showing the reductions of the number of parameters and the training time
with our compression method using the experiments on a data from a Cauchy model. The
upper-left plot shows the numbers of the compressed and the original parameters based on
500 training sequences for O = 1, 2, . . . , 7, their ratios are shown in the upper-right plot. In
the above plots, the lines with ◦ are for the methods with parameters compressed, the lines
with × are for the methods without parameters compressed, the dashed lines are for the
methods with Gaussian priors, and the dotted lines are for the methods with Cauchy priors.
The lower-left plot shows the training times for the methods with and without parameters
compressed. The lower-right plot shows the prediction time only for the methods with
parameters compressed.
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Figure 3.19: The autocorrelation plots of σo’s for the experiments on a data from a Cauchy
model, when the order O = 7. We show the autocorrelations of σo, for o = 5, 6, 7. In the
above plots, “Gaussian” in the titles indicates the methods with Gaussian priors, “Cauchy”
indicates with Cauchy priors, “comp” indicates with parameters compressed, “no comp”
indicates without compressing parameters.
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Figure 3.20: Plots showing the predictive performance using the experiments on data from a
Cauchy model. The left plots show the error rates and the right plots show the average minus
log probabilities of the true responses in the test cases. The upper plots show the results
when using the Cauchy priors and the lower plots shows the results when using the Gaussian
priors. In all plots, the lines with ◦ are for the methods that compress parameters, the lines
with × are for the methods do not compress parameters. The number of the training and
test cases are respectively 500 and 5000. The number of classes of the response is 2.
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Figure 3.21: Scatterplots of medians of all β of the last 1250 iterations of Markov chain
samples, for the models with Cauchy and Gaussian priors, from the experiment with data
from a Cauchy model, with the order O = 4, and with the parameters compressed. The
right plot shows in a larger scale the rectangle (−1, 1)× (−1, 1).

variables that have the same values for all the training cases. Working with these com-

pressed parameters, we greatly shorten the training time with MCMC. These compressed

parameters can later be split into the original parameters efficiently. We have demonstrated,

theoretically and empirically, that given a data set with fixed number of cases, the num-

ber of compressed parameters will have converged before considering the highest possible

order. Applying Bayesian methods to regression and classification models with high-order

interactions therefore become much easier after compressing the parameters, as shown by

our experiments with simulated and real data. The predictive performance will be improved

by considering high-order interactions if some useful high-order interactions do exist in the

data.

We have devised schemes for compressing parameters of Bayesian logistic sequence pre-

diction models and Bayesian logistic classification models, as described in Section 3.4 and 3.5.
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The algorithm for sequence prediction models is efficient. The resulting groups of interaction

patterns have unique expressions. In contrast, the algorithm for classification models works

well for problems of moderate size, but will be slow for problems with a large number of cases

and with very high order. The resulting groups of interaction patterns may not have unique

expressions, requiring extra work to merge the groups with the same expression afterward. A

better algorithm that can compress the parameters in shorter time and have a more concise

representation of the group of parameters may be found for classification models, though the

improvement will not shorten the training time.

We have also empirically demonstrated that Cauchy distributions with location parameter

0, which have heavy two-sided tails, are more appropriate than Gaussian distributions in

capturing the prior belief that most of the parameters in a large group are very close to 0

but a few of them may be much larger in absolute value, as we may often think appropriate

for the regression coefficients of a high order.

We have implemented the compression method only for classification models in which the

response and the features are both discrete. Without any difficulty, the compression method

can be used in regression models in which the response is continuous but the features are

discrete, for which we need only use another distribution to model the continuous response

variable, for example, a Gaussian distribution. Unless one converts the continuous features

into discrete values, it is not clear how to apply the method described in this thesis to

continuous features. However it seems possible to apply the more general idea that we need

to work only with those parameters that matter in likelihood function when training models

with MCMC, probably by transforming the original parameters.
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