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Part I: The Hamiltonian Monte Carlo Method

(“Hybrid Monte Carlo”, Duane, Kennedy, Pendleton, and Roweth, 1987)



Sampling with Hamilitonian Dynamics

1. Let the distribution of interest have density π(q) = (1/Z) exp(−U(q)),

where U(q) is the “potential energy” at “position” q.

2. Introduce extra momentum variables, p, of the same dimension as q,

and define a “kinetic energy”, K(p). Typically, K(p) = pT p/2.

3. Define the “Hamiltonian” to be H(q, p) = U(q) + K(p), and let the

joint density of q and p be proportional to exp(−H(q, p)).

Note: q and p are independent, and the marginal density for q is π.

4. Repeatedly do the following:

• Sample p from its density, which is N(0, I) when K(p) = pT p/2.

• Find a proposal (q∗, p∗) from (q, p) by simulating Hamiltonian

dynamics for some amount of fictitious time.

• Accept or reject (q∗, p∗) as the next state according to the usual

Metropolis acceptance probability, min[1, exp(−H(q∗, p∗) + H(q, p))].



Hamilton’s Dynamical Equations

Hamiltonian dynamics is defined by the following differential equations for

how the state (q, p) evolves with “time”, t:

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −

∂H

∂qi

When H(q, p) = U(q) + K(p) and K(p) = pT p/2, we see that

dqi

dt
= pi,

dpi

dt
= −

∂U

∂qi

so the “position” variables get pushed by the “momentum” variables,

which are themselves controlled by the gradient of the potential energy.

The mapping (q, p)→ (q∗, p∗) obtained by applying these dynamical

equations for some time interval has two crucial properties:

• The mapping leaves H invariant: H(q∗, p∗) = H(q, p).

• The mapping preserves volume in (q, p) space — ie, the determinant

of the Jacobian matrix for the transformation is one.



The Leapfrog Discretization

These dynamical equations can seldom be solved exactly. We need to

approximate them using some stepsize, ε, for time. The “leapfrog”

discretization is usually used:

pi(t + ε/2) = pi(t) − (ε/2)
∂U

∂qi
(q(t))

qi(t + ε) = qi(t) + ε pi(t + ε/2)

pi(t + ε) = pi(t + ε/2) − (ε/2)
∂U

∂qi
(q(t + ε))

Although this approximation does not keep H constant, crucially, it does

preserve volume exactly (apart from floating-point roundoff error).

The error in H is corrected by the Metropolis accept/reject decision, so

the final result is exact despite the approximate dynamics. (Although if

ε is too big, the error in H will be large, and acceptances will be rare.)



HMC for a Bivariate Gaussian

Here is a trajectory that produces an HMC proposal for a bivariate

Gaussian distribution, with means of 0, standard deviations of 1, and

correlation 0.95. The trajectory is simulated with 25 leapfrog steps with

ε = 0.25, from initial state q = [−1.50,−1.55]T and p = [−1, 1]T :
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The error in H at the end of the trajectory is +0.41, so the probability of

accepting the end-point as the next state is exp(−0.41) = 0.66.



Some Properties of Hamiltonian Monte Carlo

• The trajectory used to propose a new state proceeds systematically

in one direction — until forced to turn when it reaches a low-density

region — rather than in a random walk. Hence, with stepsize ǫ a

trajectory of L leapfrog steps will often move a distance εL.

• The stepsize ε must be tuned to be small enough for the dynamics to

be stable, and the error in H to be small, big enough for efficient

movement.

• The number of leapfrog steps, L, must be tuned so that a trajectory

(of duration εL in fictitious time) leads to a nearly independent point.

• HMC is invariant to translation and rotation of the coordinate system

for q (while the kinetic energy for p is kept fixed).

Arbitary invertible linear transformations for q (changing U(q)) have

no effect if the inverse transformation is applied to p (changing K(p)).



Scaling Characteristics of Hamiltonian Monte Carlo

If we increase the dimensionality, d, by adding independent replicas. . .

• The optimal HMC stepsize decreases as d−1/4.

• The optimal number of leapfrog steps in a trajectory increases as d1/4

(maintaining the length of the trajectory in fictitious time).

• The number of leapfrog steps needed to reach a nearly independent

point grows as d1/4.

Compare this with random-walk Metropolis updates, where the optimal

proposal standard deviation decreases as d−1/2, and the number of

updates needed to reach a nearly independent point grows as d.



Part II: Billiard Monte Carlo



HMC with Reflection off Boundaries

As a prelude to the new “billiard Monte Carlo” method, consider using

HMC when some qi are constrained by qi ≥ ℓi and/or by qi ≤ ui. Can

Hamiltonian dynamics be modified to handle this?

Yes. We just imagine that U(q) increases very rapidly over a short range

as qi starts to violate the constraint. The large value of ∂U/∂qi will

reduce pi, until it reaches zero and then changes sign, at which point qi

will move away from the boundary and pi will increase with opposite sign.

End result: qi bounces off the boundary, and pi is negated.

This process replaces the update for qi in the leapfrog steps. If U(q) is

constant within the boundaries, this bouncing off the walls is all that

happens — a special case of Hamiltonian dynamics called “billiards”.



The Idea of Billiard Monte Carlo

A potential energy function that is constant where it is not infinite gives a

distribution of interest that is uniform over some bounded region. So it

seems that the special case of billiards will be useful only fairly rarely.

But when we are using Hamiltonian dynamics for sampling, we are free to

choose the kinetic energy however we wish!

We can choose a kinetic energy that is constant inside some region,

producing a sort of “reverse billiards”, in which p bounces off walls, while

q flips to an opposite point of equal potential energy.



Billiard Monte Carlo in One Dimension

Suppose that q is one-dimensional, with density π(q) ∝ exp(−U(q)).

The momentum, p, is also one-dimensional. Let its kinetic energy be 0 for

p ∈ [−1,+1] and ∞ elsewhere, giving a uniform distribution over [−1,+1].

Here is an example contour plot of H(q, p) = U(q) + K(p), along with a

trajectory following Hamiltonian dynamics:
∞
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The speed along the left part of the trajectory is higher than along the

right part, because |U ′(1.5)| is greater than |U ′(3.5)|. Movement from

q = 1.5 to q = 3.5 (and back) is instantaneous, since |K ′(±1)| =∞.



Simulating Trajectories by Solving Equations (1D Case)

We can compute a trajectory of duration D starting at (q0, p0) as follows:

1) Set t← 0, p← p0, q ← q0.

2) Set v ← −U ′(q).

3) Find the time, δ, until p reaches ±1 as it moves with velocity v.

If t + δ ≤ D, set p← p + (D−t)v and exit.

4) Otherwise, set t← t + δ, set p← p + δv (p will be ±1), solve the

equation U(q∗) = U(q) for q∗ 6= q, and set q ← q∗.

Return to step (2).

Solving the equation in step (4) is the crucial part of the computation.

The simulated trajectory will be exact if this equation is solved exactly.

This can done reasonably efficiently, to machine precision, using a

superlinearly-convergent method such as Newton-Raphson iteration.

There is then no need for an accept/reject test.



BMC with Momentum Uniform Over a Hypersphere

When the dimension of p is more than one, there are many possible

choices for the region in which K(p) is zero (with K(p) =∞ elsewhere).

One natural choice is a hypersphere of radius 1 centred at p = 0.

With this choice, a trajectory of duration D starting at (q0, p0) is

computed as follows:

1) Set t← 0, p← p0, q ← q0.

2) Set v ← −∇U(q).

3) Find the time, δ, until p intersects the surface of the hypersphere, as

it moves with velocity v. If t + δ ≤ D, set p← p + (D−t)v and exit.

4) Otherwise, set t← t + δ, set p← p + δv, solve the equation

U(q + px) = U(q) for scalar x > 0, and set q ← q + px.

Return to step (2).

Note: In step (4), the new p will be on the surface of the hypersphere, and

will also be normal to the surface. So it gives the direction for q to move.



Hypersphere BMC for a Bivariate Gaussian
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Example of a hypersphere

BMC trajectory sampling

a bivariate Gaussian with

variances of 1 and correla-

tion 0.95.

The top plots show the

paths of q and p. The

bottom plots show how q

and p vary with fictitious

time, t.



Moving to Different Potential Energy Contours

A BMC trajectory stays on one contour of the potential energy (ie, at a

fixed value of the log density for q). Clearly, we need to move between

contours to properly sample the distribution.

We can do this by alternating BMC updates with any update that can

change the potential energy, such as a simple random-walk Metropolis

update. We hope that the BMC updates will be able to quickly move to

distant points, while the other updates take care of moving between values

for the density.



Fixing the Trajectory Length by Number of Bounces

It can be difficult to guess how long a trajectory should be in fictitious

time. It seems better to fix the number of bounces, which determines the

amount of computation time.

Here’s how to do this validly, for a trajectory with K bounces:

• Pick B uniformly from {0, . . . , K}.

• Simulate backwards in time from the start point until just before

bounce B + 1.

• Simulate forwards in time from the start point until just before

bounce K −B + 1.

• Pick a point from the whole simulated trajectory uniformly with

respect to time.

This is analogous to the “windowed” variant of HMC; more elaborate

versions can reduce the probability of picking a point close to the start.



Properties of Hypersphere BMC

• Hypersphere BMC is invariant to translation and rotation of the

coordinates for q.

• If the trajectory length is determined by the number of bounces,

hypersphere BMC is invariant to equal scaling of the coordinates for

q. There is therefore no “stepsize” parameter to tune, as in HMC or

random-walk Metropolis.

• The time for a trajectory (or number of bounces) should be tuned so

that a trajectory leads to a distant point.

• The number of bounces needed to reach a distant point with

hypersphere BMC seems to scale with dimensionality as d1/2.

• Unfortunately, if simple a random-walk update (eg, Metropolis) is

used to move between contours of potential energy, the number

needed to reach a nearly independent point scales as d. A better

method for changing the potential energy is needed.



BMC with Momentum Uniform Over a Hypercube

Another option is K(p) = 0 for p ∈ [−1,+1]d and K(p) =∞ elsewhere.

With this choice, a bounce will change only one coordinate of q.

Often, recomputing the potential energy when only one coordinate of q

has changed is much faster than when all of q has changed (assuming

intermediate results from the previous computation were saved).

Hypercube BMC resembles “overrelaxation” methods for Gaussian

distributions, but is applicable to any distribution.

Like overrelaxation, analysis of hypercube BMC seems difficult. However,

empirically it explore some distributions less efficiently than hypersphere

BMC, at least before accounting for the gain from incremental

computation.



Hypercube BMC for a Bivariate Gaussian
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Example of a hypercube

BMC trajectory sampling

a bivariate Gaussian with

variances of 1 and correla-

tion 0.95. The start point

is the same as in the hy-

persphere BMC example.

The top plots show the

paths of q and p. The

bottom plots show how q

and p vary with fictitious

time, t.



Part III: Hamiltonian Importance Sampling



Review of Importance Sampling

We want to estimate expectations with respect to the distribution with

probability density π(x) = f(x)/Zf , where Zf =
∫

f(x)dx.

Suppose we can’t sample from π(x). Instead, we sample from the

distribution with density proportional to g(x), with normalizing constant

Zg =
∫

g(x)dx.

Given points x1, . . . , xn drawn from g, we can estimate Eπ[a], the

expectation of a(x) with respect to π, by

n
∑

i=1

wia(xi)
/

n
∑

i=1

wi

Here, wi = f(xi)/g(xi) is the importance weight for point xi.

We can estimate the ratio Zf/Zg by (1/n)
n
∑

i=1

wi.



Difficulties with Importance Sampling

When π(x) is complex and high-dimensional, it is difficult to choose a

distribution g(x) that satisfies all of the following requirements:

1) It is a good approximation to π. If not, the importance weights will be

highly variable, and the effective sample size when estimating Eπ[a]

will be very small.

2) We can feasibly sample from it (independently). Easily-sampled

distributions like Gaussians aren’t good approximations. We need

something like the distribution defined by K Metropolis updates from

a start state drawn from a broad distribution.

3) We can compute g(x), and hence the importance weights. Sadly,

the density for the distribution defined by K Metropolis updates

involves an infeasible integral over all intermediate states.



Probability Densities for Transformations of Variables

Before introducing a new importance sampling scheme, I’ll review a

crucial topic: How probabability densities transform.

Let the multi-dimensional variable x have density πx(x). Define a

transformed variable y = h(x), where h is differentiable and invertible.

The probability density for y is given by

πy(y) = πx(h−1(y)) / |det h′(h−1(y))|

where h′(x) is the Jacobian matrix for the transformation.

Simple example: If y = αx, then πy(y) = πx(y/α)/αd, where d is the

dimensionality of x and y.



Basic Hamiltonian Importance Sampling

Let x = (q, p) and make π(x) proportional to f(x) = exp(−H(q, p)/T ),

with H(q, p) = U(q) + pTp/2 and “temperature” T = 1,

We define an importance sampling distribution for (q, p) as follows:

• Generate an initial q from some simple, broad distribution, and an

initial p from its distribution at some high T0 (which is N(0, T0I)).

• Apply K leapfrog steps to move from this initial (q, p) to a final (q, p).

Note: The Jacobian for each such transformation is one.

• After each leapfrog step, multiply p by some factor, α, less than one.

This cools the system towards the desired temperature of T = 1.

Note: The Jacobian for this multiplication is αd, where d = dim(p).

Randomness comes only from the generation of the initial state. The

subsequent deterministic transformation has Jacobian αKd, so we can

easily compute the density of the final point, and its importance weight.



Details of Basic Hamiltonian Importance Sampling

We generate each xi = (qi, pi) and associated weight, wi, as follows:

1. Generate q(0)

i , say uniformly over some bounded region of volume V0.

Generate p(0)

i at temperature T0, with density N0(p).

2. For k = 1, . . . , K:

Perform one (or more) leapfrog steps with stepsize ǫ

to produce (q(k)

i , p̃(k)

i ) from (q(k−1)

i , p(k−1)

i ).

Let p(k)

i = αp̃(k)

i .

3. Let qi = q(K)

i and pi = p(K)

i .

4. Let wi = exp(−H(qi, pi)) / (N0(p
(0)

i )/αKdV0), where d is the

dimensionality of p (and q).

We will need to tune T0, ǫ, α, and K to get good performance.



Properties of Hamiltonian Importance Sampling

• It can be used to estimate the normalizing constant for Zf , by

(1/n)
∑

i wi, as well as expectations with respect to π

• It’s exact, apart from round-off and statistical errors (no error from

using a finite leapfrog stepsize).

• It uses a annealing-style importance sampling distribution that will

tend to visit various different local modes.

• We can compute the correct weights for this importance sampling

distribution, even though it is very complex.

• It cools the system by extracting energy (from the momentum) a bit

at a time, so the system passes through all intermediate energy states.

This last property is important for some distibutions with a “phase

transition”, and also because it eliminates the need to determine a

detailed schedule of temperatures for intermediate distributions.



When Would We Expect This to Work?

For importance sampling to work well,

• All points typical of π(x) must have a reasonably high probability of

being sampled. This is crucial.

• Points not typical of π(x) must not be sampled too often. But this is

less crucial.

To check how well Hamiltonian importance sampling will work, we can

imagine backward trajectories with division of p by α, starting from points

drawn according to π. These backward trajectories must lead to points

typical of the initial distribution (uniform for q, temperature T0 for p).

There’s reason to doubt this:

• We’d need to make a good guess at K to match the cooling time.

• There may be no good value for K, if there are multiple modes with

different characteristics.



Picturing the Problem

Here’s a picture of how the backward trajectories might not reach the

region of high initial probability:
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Picking the Number of Steps Randomly

We can fix this problem by choosing the number of leapfrog steps

randomly, from some range, Kmin, . . . , Kmax. If we choose Ki, we then

use the same procedure as before to produce (qi, pi) = (q
(Ki)

i , p
(Ki)

i ).

But: To compute the importance weight, we now need to add together

the probability of generating (qi, pi) using any value for K, not just Ki.

To do this, we simulate backwards (dividing p by α) from (q(0)

i , p(0)

i ) for

Kmax−Ki leapfrog steps, to get (q(−1)

i , p(−1)

i ), . . . , (q
(Ki−Kmax)

i , p
(Ki−Kmax)

i ).

The total probability of generating (qi, pi) can then be computed as

1

Kmax−Kmin+1

Kmax
∑

K=Kmin

K0(p
(Ki−K)

i ) / αKdV0



Picturing this Solution

Here’s how the problem seen before goes away if we randomizing the

number of leapfrog steps to the previous number plus −1, 0, or +1:
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Ensuring Equipartition of Kinetic Energy

Another potential problem: Backward trajectories from typical points

may result in states at the initial temperature that aren’t in equilibrium

with respect to partition of kinetic energy among momentum variables.

Example: When simulating a molecular cluster, backward trajectories

will lead to atoms escaping from the cluster at various times, with various

kinetic energies, which may be unlikely to interact thereafter.

A solution: Periodically mix the momentum variables by doing a

rotation in momentum space, using a series of random rotation axes and

angles. Choosing randomly avoids the possibility that we’re unlucky

enough to fix on some particularly bad rotations, but for good

performance, almost all sequences of random choices must be good.



Simultaneously Producing Multiple Trajectories

Rather than get just one sampled state from a trajectory Ki steps long,

with Ki randomly chosen from Kmin to Kmax, we can with little extra

effort get sampled states for all trajectory lengths from Kmin to Kmax.

We just simulate forward for Kmax steps, and backward for Kmax−Kmin

steps, then look at the Kmax−Kmin+1 trajectories that start at the

random initial state.

Here’s a picture when Kmin = 6 and Kmax = 8:

Random initial state
Possible final states

States to consider as initial states for state 7

Other states to consider
as possible initial states

65 7 83 4210−2 −1



Keeping the Prior at High Temperatures

For a Bayesian model, it’s not desirable for the prior to be downweighted

at high temperature — only the likelihood should have less effect. But if

the potential energy is the log posterior density, the large momentum at

the start of a Hamiltonian importance sampling run will push the

parameters to values with low prior probability.

Solution: Define the potential energy as the log likelihood, and

incorporate the prior via a form of “slice sampling”.

At the start of each leapfrog step, sample a “slice level” uniformly

distributed from zero to the prior density of the current point. After the

leapfrog step, check whether the prior density is below this level, and if

so, restore the state before the leapfrog step and negate the momentum.



Problems with Hamiltonian Importance Sampling

After all this work, Hamiltonian importance sampling still has problems:

• As for other annealing methods, it’s hard to decide what temperature

to start at, and how fast to cool.

• It’s hard to set the leapfrog stepsize. Different stepsizes may be

appropriate at different points in the run, but a schedule of varying

stepsizes would be hard to tune, and may not work since different

runs can go to different modes. In the MCMC context, one can do

updates with several different stepsizes, hoping at least one is

appropriate, but that’s not an option here (or is it?).

• As for other importance sampling methods, it’s hard to tell how well

it’s working. The variance of importance weights can be very high

without this being apparent in the sample actually obtained.



Applying the Idea to Other MCMC Methods

Producing an importance sampling distribution by “cooling” a simple

high-temperature distribution is natural when sampling by Hamiltonian

dynamics, where momentum variables already provide a “heat reservoir”.

Can we do similar things for other MCMC methods, such as Metropolis?

We can define a heat reservoir variable, h, that is positive, with energy

equal to h, and initialize h to a large value.

We can accept Metropolis proposals that increase the energy by ∆ when

∆ < h, and change h to h−∆ if we accept (h will increase if ∆ < 0).

We can then cool the system after each Metropolis update by multiplying

h by some factor α less than one.

Unfortunately, even if we consider the random proposal offsets to be

given, the mapping this defines is not invertible.

Is there a fix? Does it work better with other methods, such as slice

sampling?


