Nuisance Parameters and Other Issues in Searching for
Signals in High-Energy Physics Experiments
Radford M. Neal, University of Toronto
28 June 2007
Outline of the Talk
I'll look at two versions of a problem that I hope resemble ones of interest to

1) A signal detection problem without nuisance parameters

- Robustness

2) Introducing nuisance parameters for uncertain physics and detector properties

$$
\begin{align*}
& \text { My discussion of solutions will have much in common with present practice, but I } \\
& \text { hope to clarify the problems, for both physicists and statisticians. }
\end{align*}
$$

The likelihood function is the probability of the observed data, seen as a function
of the model parameter(s).
The likelihood function for this problem is

$$
L(f)=\prod_{i=1}^{O}\left[f p_{1}\left(v_{i}\right)+(1-f) p_{0}\left(v_{i}\right)\right]
$$

The likelihood function is defined only up to an arbitrary constant factor - ie,
only ratios of likelihood for different values of f are meaningful.
depend only on the likelihood function.
Frequentist confidence intervals and p-values (other than those for model
experiment that is relevant to inference for the parameters(s). So inference (except
checks of the appropriateness of the model that the likelihood is based on) should
The Role of the Likelihood
According to the likelihood principle - widely, though not universally, accepted
by statisticians - the likelihood function contains all the information from the
experiment that is relevant to inference for the parameters(s). So inference (except
checks of the appropriateness of the model that the likelihood is based on) should
depend only on the likelihood function.
Frequentist confidence intervals and p-values (other than those for model
checking) usually violate this principal.
 coverage.

$$
\begin{aligned}
& \text { Unfortunately, We Can't Compute the Likelihood } \\
& \text { Back to our model, with likelihood } L(f)=\prod_{i=1}^{O}\left[f p_{1}\left(v_{i}\right)+(1-f) p_{0}\left(v_{i}\right)\right] . \\
& \text { This simple mixture model, with only the mixing proportion unknown, would } \\
& \text { usually not be difficult (eg, easy to find the maximum likelihood estimate for } f \text {). } \\
& \text { But here, we don't know how to compute the likelihood! It involves } p_{0} \text { and } p_{1} \text {, } \\
& \text { which are known only through simulation programs. } \\
& \text { If the } v_{i} \text { are low-dimensional, we can generate many points from } p_{0} \text { and } p_{1} \text {, and } \\
& \text { use them to get good estimates for these density functions. } \\
& \text { But if the dimensionality if greater than } \approx 4 \text {, this may not work well. } \\
& \text { Fortunately, there's a fairly good solution... }
\end{aligned}
$$

So it's enough to be able to compute $p_{1}(v) / p_{0}(v)$, without having to compute
$p_{0}(v)$ and $p_{1}(v)$.

 $\frac{(a)^{\llcorner } d+(a)^{0} d}{(a)^{\downarrow} d}=\left(\left.a\right\|_{\lceil\mathrm{eu} \Omega!\mathrm{s})_{d}}\right.$ s! Kч!!ịqqqo - uәгqoıd s! 	

$$
\begin{aligned}
& \text { Robustness to Flaws in the Classifier } \\
& \text { If we don't totally trust our classifier, we can still use it to get good results. We } \\
& \text { just treat it as a way of reducing the dimensionality of the data - from the } \\
& \text { multidimensional } v_{i} \text { to the scalar } r_{i} \approx p_{1}\left(v_{i}\right) / p_{0}\left(v_{i}\right) \text { produced using the classifier. } \\
& \text { If the classifier were perfect, this reduction does not lose any useful information. If } \\
& \text { it's not perfect, it will throw away a bit of information, but the reduction to a } \\
& \text { scalar allows us to easily estimate } p_{0}(r) \text { and } p_{1}(r) \text { from simulation data, and use } \\
& \text { them to compute the likelihood given the } r_{i} \text {. The results will be valid, if not quite } \\
& \text { as precise as with a perfect classifier. } \\
& \text { One could reduce the data further by binning the } r_{i} \text { values, but this loses } \\
& \text { information. (But using a fairly large number of bins may be OK, if it loses little } \\
& \text { information, and makes estimating the probabilities easier.) } \\
& \text { It's not so easy to get robustness to flaws in the simulators for background and } \\
& \text { signal events. That brings us to nuisance parameters... }
\end{aligned}
$$

Handling Uncertainty in the Physics and Detector Behaviour
In practice, we don't know p_{0} and p_{1} exactly. The simulators for generating from
these distributions have some parameters - relating either to the physics or to
the behaviour of the detector - whose values are not known precisely. Call these
parameters ϕ.
(We can assume ϕ is the same for simulating p_{0} and p_{1}, though some components
of ϕ may be used by only one of these simulators.)
We have to assume that these ϕ parameters are known to some degree, or there's
no hope. I'll assume that based on theory or previous experiments, a prior
distribution for ϕ is available, with density $p(\phi)$. This prior might well be flawed
however - eg, it might assume independence of components of ϕ when it really
ought not to.
Note that ϕ is a "nuisance" parameter, since our only real interest is in f. The
fact that ϕ is unknown is an annoyance. (Well, maybe someone is interested in ϕ
itself, but I'll assume not here.)
The Likelihood and Marginal Likelihood
Here's our likelihood function once there are ϕ parameters:

$$
L(f, \phi)=\prod_{i=1}^{O}\left[f p_{1}\left(v_{i} \mid \phi\right)+(1-f) p_{0}(v \mid \phi)\right]
$$

where $p_{0}(v \mid \phi)$ and $p_{1}(v \mid \phi)$ denote probability densities for generating v from the
background and signal simulators with parameters set to ϕ.
This is a high dimensional function (since ϕ is typically high dimensional), and
hence will be difficult to visualize. Just plotting $L(f, \phi)$ will not be a feasible way
of presenting the results of the experiment.
We can integrate $L(f, \phi)$ with respect to the prior for ϕ, however, to obtain a
marginal likelihood function for f alone, which we would be able to plot (if we
could compute it):

$$
\underline{L}(f)=\int L(f, \phi) p(\phi) d \phi
$$

We could compute this fairly easy by simple Monte Carlo (sampling from the prior
for ϕ), if we could compute $L(f, \phi) \ldots$
Can We Still Reduce Dimensionality Using a Classifier?
Here's what happens if we rewrite the likelihood as we did before:

Computing the Marginal Reduced Likelihood
We need to compute the marginal reduced likelihood,

$$
=\int \prod_{i=1}^{O}\left[f p_{1}\left(r_{i} \mid \phi\right)+(1-f) p_{0}\left(r_{i} \mid \phi\right)\right] p(\phi) d \phi
$$

If the r_{i} are fairly low dimensional, this seems possible.
$\underline{L}_{r}(f)=\int L_{r}(f, \phi) p(\phi) d \phi$
Concluding Questions and Remarks

- How does this relate to Poisson models of signal + background?
If we reduce all the way to r_{i} being binary (and f is small), then $L(f, \phi)$
becomes a Poisson likelihood, and uncertainty in ϕ shows up as uncertainty in
the Poisson mean.
- How do we account for Monte Carlo error in estimating $p_{0}(r \mid \phi)$ and $p_{1}(r \mid \phi)$
from simulation runs?
- How do we decide on the number of different nuisance parameter values for
reducing dimensionality (H) and computing the marginal likelihood (K ?
- Aren't we ignoring relevant information not required by classifiers for any ϕ ?
Remember, we're very limited in the dimensionality of r, if we're to get good
estimates for $p_{0}(r \mid \phi)$ and $p_{1}(r \mid \phi)$. But we could try to directly reduce the
dimensionality of v (eg, with PCA), and add a small number of variables
found that way to r. Perhaps better would be to build a model for $p(\phi \mid v)$
and then do PCA on the predictions of this model.
- Can we be robust to flaws in the prior for ϕ ?

