
An Automatic Differentiation Extension for R,

and its Implementation in pqR

Radford M. Neal, University of Toronto

Dept. of Statistical Sciences and Dept. of Computer Science

Vector Institute Affiliate

http://www.cs.utoronto.ca/∼radford

http://radfordneal.wordpress.com

http://pqR-project.org

RIOT2019, Toulouse

The Need for Automatic Differentiation

Derivatives (gradients) are crucial for efficient implementation of many

statistical methods:

• Maximum likelihood estimation, using gradient-based optimization.

(Plus standard errors for the MLE are found from second derivatives.)

• Neural network training by gradient descent, optimizing the likelihood

or some other criterion.

• Markov chain Monte Carlo using gradients (eg, Hamiltonian Monte

Carlo).

Traditionally, researchers have spent much time manually figuring out how

to compute derivatives. Finding derivatives automatically instead greatly

facilitates exploration of new methods.

Automatic differentiation implementations exist are are being developed for

TensorFlow, Stan, Python, Julia, and Swift.

Approaches to Automatically Computing Derivatives

Numerical differentiation: Approximation using finite differences. For

derivatives w.r.t. N values, requires evaluating the expression at least N+1

times. Implemented by R’s numericDeriv function.

Symbolic differentiation: Exact apart from roundoff error. Hard to

implement for expressions more complex than a composition of simple

functions. Implemented by R’s deriv function.

Run-time use of the chain rule: Exact apart from roundoff error.

Comes in two flavours:

• Forward mode: Compute derivatives of sub-expressions at the same

time as the sub-expression’s value. Fast if derivatives are computed

w.r.t. only a few values.

• Reverse mode: Record how values are computed. Once the final

value is known, compute derivatives by working backward. Fast if the

final value is scalar (or is at least of low dimension).

An R Language Extension for Automatic Differentiation

Summary and Objectives

• New language constructs are introduced to allow convenient use of

automatic differentiation.

• The aim is for gradients to be efficiently computable for R expressions

and functions written using most common language features, in any

reasonable style, without previous thought of derivatives.

• The tracking of gradients associated with values is invisible at the R

level, ensuring that functions behave the same when gradients are

requested as when not.

• The strategy used to integrate automatic differentiation into the

interpreter can support either forward or reverse mode differentiation.

A hybrid approach is currently used, though for some operations only

forward mode is implemented at this time.

The with gradient Construct

A new with gradient language construct delivers both the value of an

expression, and its gradient with respect to a specified set of variables:

> with gradient (a=1.2) sin(3*a) # gradient is 3*cos(3*1.2)

[1] -0.4425204

attr(,"gradient")

[1] -2.690275

The gradient is attached as a "gradient" attribute – an existing convention

used by the standard numericDeriv and nlm functions.

Gradients can be with respect to several variables, giving a list:

> r <- with gradient (a=3, b=8) a*b + a^2

> attr(r,"gradient") $ a

[1] 14

> attr(r,"gradient") $ b

[1] 3

An Example Function

Find the distance travelled by a projectile launched on level

ground with initial velocity (vx,vy), with no air resistance.

distance_travelled <- function (vx, vy, dt=0.0001, g=9.8) {

x <- y <- 0

repeat {

last_x <- x

last_y <- y

x <- x + vx*dt

y <- y + vy*dt

if (y < 0) # return impact x location, interpolating

return ((x*last_y - last_x*y) / (last_y-y))

vy <- vy - g*dt

}

}

Using Automatic Differentiation with this Example

Let’s use this function to find the angle of launch maximizing distance (for

fixed initial speed), using nlm, with derivatives found by with gradient.

> nlm (function (a)

+ with gradient (a) -distance_travelled (cos(a), sin(a)),

+ 0) $ estimate * 180/pi

[1] 44.99701

Note that derivatives are automatically tracked through the function call,

assignments, loop, and if statement. Derivatives aren’t tracked when not

needed — eg, y < 0 fetches y without its derivative.

The distance_travelled function might have been written with no

thought of differentiation — though it is essential to this example that it

interpolates the impact position; not doing so makes it piecewise constant

in vy, with a zero derivative w.r.t. vy for any value of dt.

Language Constructs that Track Gradients

Gradients can be tracked for expressions with real or list values that involve

• Arithmetic operators (+, -, *, /, ^).

• Matrix operations (%*%, crossprod, tcrossprod, t).

• Subsetting operators ($, [.], [[.]]).

• Most mathematical functions (eg, sin) and functions involving

distributions (eg, pnorm).

• Many random generation functions (eg, dnorm) — based on how the

value would change with the seed fixed.

• Many other builtin/primitive functions (eg, rep, c, list, lapply).

• Calls of functions, including S3 methods.

• Assignments to local variables.

• Subset assignment ($<-, [<-, [[<-).

• if, while, and repeat expressions.

Language Constructs that Don’t Track Gradients

Gradients are currently not tracked for

• Some functions for which they just haven’t been implemented yet

(eg, aperm, cov).

• Values stored as attributes.

• Calls of S4 methods.

• Complex-valued expressions.

Gradient tracking in the above situations might be implemented in future.

Gradient tracking will probably not be implemented for

• Assignments with <<-.

• Storing values in environments with $<-.

These have semantic issues with gradients w.r.t. no-longer-existing variables.

Form of the Gradient

The gradient of A with respect to B is

• A scalar, if A and B are both scalar.

• A vector, is A is scalar and B is a vector.

• An n-by-m matrix (the “Jacobian”), if A is a vector of length n and B

is a vector of length m.

• A list, if A is a scalar or vector and B is a list. Each element of the list

gives the gradient with respect to the corresponding element of B.

• A list, if A is a list and B is a vector or scalar. Each element of the list

gives the gradient of the corresponding element of A.

• A list of lists, if both A and B are lists — the upper levels of the list

correspond to elements of B (perhaps recursively), the lower levels to

elements of A (perhaps recursively).

Dimensions for A and B are ignored — the Jacobian is always a matrix.

The compute gradient Construct

When desired, the method for computing the gradient of an expression can

be specified explicitly. For example, rather than

sigmoid <- function (x) 1 / (1+exp(-x))

for which gradients will be computed automatically, one could instead write

sigmoid <- function (x)

compute gradient (x) { v <- 1 / (1+exp(-x)); v }

as v * (1-v)

Using the already-computed function value, v, may be more efficient.

The compute gradient construct could be also useful in cases where the

interpreter does not know how to compute the gradient — for example,

when the function is computed by an external C or Fortran routine.

More than one variable may be specified:

compute gradient (x, y) { s <- x^2+y^2; s^2 } as 4*s*x, 4*s*y

Specifying the Gradient in compute gradient

The expression for computing the gradient may return the gradient in the

same form as it is returned by with gradient.

But. . . a diagonal Jacobian matrix can be specified by a vector of just the

diagonal elements. This is convenient (and faster) for vectorized functions

— eg, the earlier sigmoid example works this way when x is a vector.

Also. . . the gradient expression can produce a function that is called to

compute the gradient, rather than the gradient itself. If this function has

left and/or right arguments, it may be called to compute the product of

the Jacobian with a matrix on the left or right — which it may be able to

do efficiently without computing the full Jacobian. (Though currently the

function is always called without a left or right argument.)

Gradient computations in compute gradient are skipped when it is

evaluated in a context where the corresponding gradient is not needed.

Using track gradient and gradient_of

An alternative to with gradient when you don’t want the gradient

attached as an attribute is to use track gradient and gradient_of.

For example:

> track gradient (a=7) {

+ r <- a^2

+ list (value = r, grad = gradient_of(r))

+ }

$value

[1] 49

$grad

[1] 14

You can call gradient_of for any expression when inside (dynamicallly)

a track gradient or with gradient construct.

No Higher-Order Derivatives (Yet)

It’s permitted to nest with gradient or track gradient constructs.

But this won’t let you compute second or higher-order derivatives:

– Attributes, including a gradient attribute, don’t record gradient

information.

– The value of gradient_of doesn’t have gradient information.

So, for example, we get zero when we try

> track gradient (a=7)

+ gradient_of (track gradient (a) gradient_of(a^3))

[1] 0

It’s unsurprising that there’s no trick that does this — getting higher-order

derivatives would require code to compute them for primitive functions.

How Higher-Order Derivatives Might be Handled

Higher-order derivatives could be implemented by just relaxing these

limitations.

The gradient_of function could come with gradient information for outer

with gradient or track gradient constructs (but not the innermost one).

Then we’d see

> track gradient (a=7)

+ gradient_of (track gradient (a) gradient_of(a^3))

[1] 42

Some syntactic sugar might make this more convenient.

Getting higher-order derivatives from nesting with gradient or

track gradient constructs would ensure that the primitives know what

order of derivatives they need to compute (based on the depth of nesting).

Explicit Reverse Mode with back gradient

The pqR implementation tries to automatically use reverse mode

differentiation when it’s beneficial, but it doesn’t always do so yet.

One can do reverse mode explicitly with back gradient:

L <- as.list(seq(0,1,length=11))

with gradient (L) { # tracks gradient w.r.t. 11 elements of L

p <- 0

for (i along L) # ’along’ is a pqR extension

p <- p + i*L[[i]]

p^2+p^3+p^4+p^5 # every operation computes derivatives

} # w.r.t. all 11 elements of L

with gradient (L) { # compute same result more efficiently...

p <- 0

for (i along L)

p <- p + i*L[[i]]

back gradient (p) # operations in the expresson below

p^2+p^3+p^4+p^5 # compute derivative w.r.t. p only, then

} # chain rule gives gradient w.r.t. L

Implementing Automatic Differentiation in pqR

The pqR implementation of R

This project is part of my pqR implementation of R (pqR-project.org).

This is a fork of the R Core implementation with many improvements.

Some changes relevant to automatic differentiation are:

• A new parser makes introducing new language constructs easier.

• Interpretive speed has been greatly improved, eliminating any need to

use the “byte-code compiler”. Implementation by direct interpretation

makes extending the language (eg, for automatic differentiation) easier.

• Multiple processor cores can be automatically used to parallelize

numerical computations. This may be especially useful when gradients

can be computed in parallel with the function value.

• An internal mechanism allows expressions to be evaluated asking for a

“variant” result — crucial for how automatic differentiation is

implemented in this project.

Environments Storing Gradient Information

Environments in which variables should store gradient information are

marked with a STORE_GRAD bit (in sxpinfo). These include

• The environment created for the body of a with gradient or

track gradient construct.

• The environment created when a function is called from an environment

with STORE_GRAD set.

• Environments set up for S3 methods called from an environment with

STORE_GRAD set.

An environment created for with gradient or track gradient will also

contain information on the gradient variables it declares.

When Gradient Information is Requested

The internal “variant result” mechanism in pqR is used to control whether

evaluation of an expression comes with a request for gradient information.

Contexts where gradient information is requested include

• The body of a with gradient construct — so the gradient can be

attached to the value as a gradient attribute.

• The argument of gradient_of.

• The right-hand-side of a local assignment, when the local environment

has STORE_GRAD set — so the gradient can be stored along with the

variable’s value.

• Arguments of operators and functions that can compute gradients, such

as + and sin, but not floor.

• Whichever branch of an if statement is taken (but not the condition),

if the gradient of the whole expression has been requested.

Where Gradient Information is Stored

Information on the gradients for a value is stored in the attribute field of

the binding cell or promise that references the value. This includes

• Binding cells for the gradient variables created by with gradient,

track gradient, or back gradient (for which the gradient is initially

the identity).

• Binding cells for variables created in an environment with STORE_GRAD

set, if their value has gradient information.

• Promises for arguments of functions called from environments with

STORE_GRAD set. These promises are also marked with STORE_GRAD.

When forced, if their value has gradient information, it is stored in

the attribute of the promise.

• Cells in argument lists created for BUILTIN primitives that handle

gradients, when the argument value has gradient information.

Format of Stored Gradient Information

The gradient information for a value records its gradient with respect to one

or more variables in with gradient, track gradient, or back gradient

constructs (which may be nested).

Such a gradient variable is identified by the environment for the body of the

construct in which it is declared, and its index in the list of gradient

variables that construct declares.

These gradients are kept in linked CONS cells, with the CAR of the cell

holding the gradient, the TAG of the cell pointing to the environment, and

the top byte of the “gp” field holding the index.

For gradients with respect to list values, the gradient will be a

corresponding list, flagged with a GRAD_WRT_LIST bit (in sxpinfo),

perhaps to more than one level.

At this point.... the implementation as described could support various

representations of the gradients with respect to numeric values, without

affecting the interface to the rest of the interpreter.

A Picture of All This. . .

The Need for Compact Gradient Representions

We now need to represent the gradient of a value with respect to some

numeric value (maybe not scalar) — which is either the value of a gradient

variable, or an element of a list that is the value of a gradient variable.

A naive implementation might represent these gradients as they would be if

attached as a gradient attribute, or returned by gradient_of.

But this would be very inefficient. Consider

M <- matrix(something,1000,1000)

val <- with gradient (M) sum(M^2)

The gradient attribute attached to val will have 1000000 elements. But in

a naive implementation, M^2 will have a 1000000-by-1000000 Jacobian

matrix (with 1012 elements) associated with it. Indeed, at the start of the

with gradient construct, M itself will have a 1000000-by-1000000 Jacobian

— set to the identity matrix!

We need to often represent gradients more compactly.

Some Compact Gradient Representations

• Diagonal Jacobians, represented by only the diagonal elements, or by a

single number if a multiple of the identity matrix.

• “One-in-row” Jacobians with at most one non-zero element in each row.

Useful for instance in with gradient (a) { a[2] <- a[5]; ... }

• Scaled Jacobians — diagonal matrix times another matrix. Need only

update the diagonal factor when doing x <- 3*sin(x).

• Matrix product Jacobians — they have lots of zeros, so better to not

represent them explicitly.

• Reverse-mode Jacobians — simplest form is a Jacobian times another,

which might itself be a Jacobian times another, etc. When a full

Jacobian is finally needed, the factors can be multiplied in whatever

order is most efficient.

This aspect of the implementation is a work in progress.

Testing Performance

Here are some silly functions for performance testing:

f <- function (x) {

s <- 1

for (i in 1:100) s <- s + (x^2+1)/s

4 * cumsum(s)^2

}

g <- function (x,n) {

for (j in 1:n) r <- f(x)

r

}

I’ve so far been concentrating on completing full support for automatic

differentiation, and on eliminating drastic performance issues, rather than

on detailed optimizations. So performance in the following tests could

probably be improved fairly easily.

Performance Results with No Gradients

Comparison when no gradients are requested:

With pqR-2019-02-19 (no autodiff support):

> x <- c(7,4,9,5,3)

> print (system.time (print(g(x,10000))))

[1] 50162.08 119580.26 422851.01 646335.83 802707.50

user system elapsed

0.262 0.000 0.262

With pqR-2019-07-05 (preliminary version with autodiff):

> x <- c(7,4,9,5,3)

> print (system.time (print(g(x,10000))))

[1] 50162.08 119580.26 422851.01 646335.83 802707.50

user system elapsed

0.286 0.004 0.290

The slowdown is about 10%, but changes of 5% or more can happen due to

random factors (eg, memory layout affecting cache performance).

Performance Results with Gradients (Scalar)

> x <- 7

> print (system.time (print(g(x,10000))))

[1] 50162.08

user system elapsed

0.099 0.000 0.099

> print (system.time (print(with gradient (x) g(x,10000))))

[1] 50162.08

attr(,"gradient")

[1] 16822.64

user system elapsed

0.318 0.004 0.322

> print (system.time (print(numericDeriv (quote(g(x,10000)), "x"))))

[1] 50162.08

attr(,"gradient")

[,1]

[1,] 16822.64

user system elapsed

0.195 0.000 0.195

Performance Results with Gradients (Vectors)
> x <- x0 <- c(7,4,9,5,3)

> print (system.time ((g(x,10000))))

user system elapsed

0.28 0.00 0.28

> print (system.time ((with gradient (x) g(x,10000))))

user system elapsed

0.63 0.00 0.63

> print (system.time ((numericDeriv (quote(g(x,10000)), "x"))))

user system elapsed

1.649 0.000 1.650

> x <- rep(x0,20)

> print (system.time ((g(x,10000))))

user system elapsed

0.437 0.000 0.437

> print (system.time ((with gradient (x) g(x,10000))))

user system elapsed

2.636 0.000 2.637

> print (system.time ((numericDeriv (quote(g(x,10000)), "x"))))

user system elapsed

44.533 0.000 44.533

Language Extensions to Make Using Gradients Easier

Easier Access to Attributes

Since with gradient attaches the gradient as an attribute of the value,

more convenient access to this attribute would make code easier to read.

Of course, this would also benefit other code that accesses attributes.

Proposal: Allow the @ operator to access (or change) attributes of any

object, not just slots of S4 objects. For example:

> r <- with gradient (x) f(x)

> r @ gradient # same as attr(r,"gradient")

>

> v <- c(3,1,5,2)

> v @ dim <- c(2,2) # same as dim(r) <- c(2,2)

Benefit: Postfix subsetting operators are easier to read, since the variable

is in a highly visible position on the left, not hiding inside an argument list.

Since S4 slots are implemented as attributes, there is no conflict with the

existing use of @. Only downside is that debugging S4 code might be harder,

since accessing a non-exisent slot no longer gives an immediate error.

The Need for Arithmetic on Lists

It is currently an error to apply arithmetic operators or math functions to

lists — only vectors or derived types such as matrices are allowed.

But parameters of complex statistical models are most naturally represented

as lists of parameters of various kinds. Optimizing such parameters by

gradient methods, or sampling them by MCMC methods, naturally involves

arithmetic on these lists.

At present, this can be done using the unlist and relist functions, but

this is both slow and inconvenient.

Proposal: Implement extensions so that one can do a gradient ascent step

on parameters represented as lists like so:

loglik <- with gradient (params) log_likelihood(params,data)

params <- params + stepsize * loglik@gradient

How Arithmetic on Lists Would Work

> v <- list (x=3, y=c(-4,5))

> w <- list (x=2, y=c(1,2))

>

> abs(v) # Math functions are applied recursively to list elements

$x

[1] 3

$y

[1] 4 5

> v + w # Lists with same structure can be added, multiplied, etc.

$x

[1] 5

$y

[1] -3 7

> v <- list (x=3, y=c(-4,5))

>

> v * 10 # A scalar can operate on a list - applied to each element

$x

[1] 30

$y

[1] -40 50

> v * list (x=2, y=10) # OK for a scalar to appear at a lower level

$x

[1] 6

$y

[1] -40 50

This extension is probably best implemented at the C level, within the

arithmetic primitives, but it could also be done at the R level, after a small

change to make arithmetic primitives dispatch to methods for list.

Generalizing Dimension to Shape

Once arithmetic can be done on lists, it makes sense to look at the “shape”

of a vector, matrix, array, or list.

> shape (c(3,4))

[1] 2

> shape (matrix(0,3,4)

[1] 3 4

> shape (list (x=c(3,4), y=list(1,2), z=matrix(0,4,5))

$x

[1] 2

$y

$y[[1]]

[1] 1

$y[[2]]

[1] 1

$z

[1] 4 5

Using Shape for Random Generation

One use of the shape concept would be to generate random structures with

a given shape. Such a facility would be very useful for MCMC proposals.

> rnorm (list(x=c(2,2),y=4))

$x

[,1] [,2]

[1,] 1.859454 -0.3312653

[2,] 1.380187 -1.2248318

$y

[1] 0.9131368 -0.3557320 0.7749956 -0.5363131

> rnorm (list(x=2,y=2), list(x=100,y=c(10,20)))

$x

[1] 99.55952 100.10348

$y

[1] 9.777663 19.232496

