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Abstract

Knowledge of haplotypes is useful for understanding block structures of the genome

and finding genes associated with disease. Direct measurement of haplotypes in the

absence of family data is presently impractical. Hence several methods have been de-

veloped previously for reconstructing haplotypes from population data. In this thesis,

a new population-based method is developed using a Hidden Markov Model (HMM)

for the source of ancestral haplotype segments. A higher-order Markov model is used

to account for linkage disequilibrium in the ancestral haplotypes. The HMM includes

parameters for the genotyping error rate, the mutation rate, and the recombination

rate. Four mutation models with varying number of parameters are developed and

compared. Parameters of the model are inferred by Bayesian methods, using Markov

Chain Monte Carlo (MCMC). Crucial to the efficiency of the Markov chain sampling is

the use of a Forward-Backward algorithm for summing over all possible state sequences

of the HMM. This model is tested by reconstructing the haplotypes of 129 children

in the data set of Daly et al. (2001) and of 30 children in the CEU and YRI data

of the HAPMAP project. For these data sets, family-based haplotype reconstructions

found using MERLIN (Abecasis et al. 2002) are used to check the correctness of the
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population-based reconstructions. The results of this HMM method are quite close to

the family-based reconstructions and comparable to the PHASE program (Stephens et

al. 2001, Stephens and Donnelly 2003, Stephens and Scheet 2005) and the fastPHASE

program (Scheet and Stephens 2006). The recombination rates inferred from this HMM

method can help to predict haplotype block boundaries, and identify recombination

hotspots.
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Chapter 1

Introduction

1.1 Basic genetics background

In order to explain what haplotype inference is, I will first introduce some basic genetic

terminology. Each human cell has 23 pairs of chromosomes. Each chromosome consists

of two long strands of deoxyribonucleic acid (DNA) that are tightly connected. One

strand of DNA is a chain of nucleotides coded as A, C, G, and T. The other strand

contains complementary nucleotides in which A pairs with T and C pairs with G. A

gene is a region of chromosomal DNA that encodes a specific functional product such

as a protein. Each gene has a fixed location in the genome. A marker is a short identi-

fiable sequence that has a known location, and this sequence varies between individual

chromosomes. Variants of genes or markers are called alleles. The genotype of a gene

or a marker is the pair of alleles occurring at that locus on the two chromosomes of an

individual. The pair of alleles is usually coded as letters or numbers: for example, AC

1
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1
2
1

4
3
2

from mother from father

1 2
3 2
1 4

 marker 2:
 marker 3:

mother     father 
1 1           1 2  
2 2 3 3

4 41 4

 marker 1: marker 1:

 marker 2:
 marker 3:

 marker 1:

Genotypes of a child

Genotypes of parents

Haplotypes of the child

Figure 1.1: Examples of genotypes, haplotypes and genetic inheritance.

and 24 may be used to represent the genotypes of two markers. Two common types of

genetic markers are single nucleotide polymorphisms (SNPs), which have two alleles,

and microsatellite markers, which can have many alleles.

DNA (genotype) is inherited from the two parents of each child, with each parent

contributing one of his or her chromosomes. The parental origin of any particular

DNA segment is not directly observable without additional information. However,

by observing the alleles (genotypes) in the parents and the child, inference can be

made about the parental origins of alleles. For example, in Figure 1.1, if only the

genotypes of the child are observed, how those alleles were inherited from the two

parents is unknown. However, with the parents’ genotyping information, one can infer

that alleles 1, 2 and 1 were inherited together from the mother, and alleles 2, 3 and 4

were inherited from the father.

An ordered sequence of alleles on part or all of a chromosome is called a haplotype.

For example, in Figure 1.1, 1 2 1 is one haplotype, and 2 3 4 is another haplotype.
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Haplotype inference tries to reconstruct the two haplotypes of each individual from

his (or her) genotypes. This reconstruction might be done with or without additional

family genotype information.

A haplotype block is a sequence of markers that are closely located and usually

inherited as a group (block). This ‘inheriting together’ concept is related to linkage

disequilibrium (LD). When alleles at different loci in a haplotype are not independent,

they are said to be in linkage disequilibrium. For example, if A/a and B/b are the

possible alleles at two loci, under linkage disequilibrium, the haplotype frequency of

haplotype AB is not equal to the product of allele frequencies of allele A and allele B

(i.e. f(AB) 6= f(A)f(B)). If the two loci are independent, then f(AB) = f(A)f(B),

and this is called linkage equilibrium.

Recombination and mutation are important for haplotype inference, since these

two genetic processes can lead to variability in DNA sequences between individuals

after inheritance and evolution over many generations. The chromosomes transmit-

ted to children are created during meiosis, the production of gametes. During meiosis,

crossover of the strands of parental chromosomes may happen, and recombination may

occur. Recombination leads to decay of linkage disequilibrium; closely related individ-

uals will share long chromosomal segments whereas distantly related individuals share

much shorter segments. The expected number of recombinations between two loci is

called the genetic distance. Genetic distance increases monotonically with physical

distance, but not always linearly.

Mutation is another process that is responsible for genetic variation. Mutation



CHAPTER 1. INTRODUCTION 4

refers to the rare event that the genetic material is altered. For example, a C nu-

cleotide may undergo a mutation to become a T nucleotide. If this change has no

effect on cell viability, the mutation may be inherited and can eventually become com-

mon in the population. In general, mutation rates are thought to be very small for

nucleotide substitutions per generation; they range from 10−9 to 10−4 per generation

per nucleotide (Griffiths et al. (2005), page 627).

1.2 Why do we do haplotype inference?

Haplotypes can be more informative with respect to patterns of inheritance than geno-

types at single markers because haplotypes combine the information at close markers

and also capture information about common patterns that may be descended from

ancestral haplotypes (Daly et al. 2001, Akey et al. 2001, Pritchard 2001, Niu et al.

2002, Eronen et al. 2004). That haplotypes are more informative has led to the increas-

ing importance and application of haplotype analysis. For example, haplotypes can

capture regional LD information (Niu et al. 2002). In particular, identifying haplotype

blocks is one way of studying linkage disequilibrium patterns (Daly et al. 2001, Zhu et

al. 2004, Greenspan and Geiger 2004).

Linkage disequilibrium causes associations between markers and disease even for

markers that are not part of a disease-causing gene. Therefore, one important applica-

tion of haplotype analysis is in disease risk association studies (Mander 2001, Zaykin

et al. 2002, Butt et al. 2005, The International HAPMAP Consortium 2005). These

studies examine the association between a particular set of haplotypes and disease
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traits. Disease risk mutations are usually more strongly associated with a haplotype

than with any one marker. For example, Yuan et al. (1999) identified the mutation

MSH2*1906G>C (mismatch-repair gene) which causes colorectal cancer. Foulkes et al.

(2002) studied the genetic characteristic of this mutation. Their haplotype analysis of

this study shows that a haplotype of nine markers (A-3-G-288-255-177-A-G-C, the last

allele ‘C’ is the mutation allele) is shared by all 14 families with affected individuals.

That is, there is a strong association between this nine marker haplotype and the col-

orectal cancer. Therefore, increased success at identifying disease risk mutations may

be obtained by examining associations with haplotypes. In addition to association

studies, haplotype analysis is also helpful for studying population history (Chapman

and Thompson 2001).

Haplotypes are very important in genetic studies. However, it is still very imprac-

tical to measure them directly (Stephens et al. 2001). As seen in Figure 1.1, obtaining

haplotype estimates from family-based genotypes is possible and usually reliable. How-

ever, obtaining family data can be very difficult because family members may not be

alive or may refuse to participate. As a result, researchers often need to reconstruct

haplotypes from data on unrelated individuals only.
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1.3 How is haplotype inference for unrelated individuals

possible?

The general concept of haplotype reconstruction will be motivated by a small ex-

ample with three markers. Consider an individual taken from a specific population,

for whom genotypes of three heterozygous (i.e. the two alleles are different) markers

are known. Without parental genotyping information, the genotypes at these three

markers are equally likely fall into any of the four possible haplotype combinations

as shown in Figure 1.2. If an individual has L heterozygous markers, there are 2L−1

possible different haplotype combinations, which is a huge number even for a moderate

L. However, due to historical relatedness between all humans, only a small number

of common haplotypes are likely to be present among many sampled individuals. The

basic idea behind reconstructing haplotypes for unrelated individuals involves finding

these common haplotype patterns. This idea is used in many current haplotype infer-

ence methods (Clark 1990, Excoffier and Slatkin 1995, Hawley and Kidd 1995, Qin et

al. 2002, Stephens et al. 2001, Eronen et al. 2004).

A vivid example of common haplotypes can be seen in Figure 2 of Daly et al. (2001),

in which 11 haplotype blocks were identified (Appendix A of this thesis reproduces this

figure). In the first haplotype block, only two common haplotypes are present, and

more than 90% of the samples have one or both of these two haplotypes. How can

common patterns like this be identified and used to reconstruct haplotypes? The

first haplotype reconstruction method (Clark 1990) showed how it is possible. Clark
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1
2
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3
4

1
2
4

2
3
1

1
3
1

2
2
4

1
3
4

2
2
11

 

Genotypes of one person

1 2

3 2 
1 4 

marker 1:
marker 2:

marker 3:

Probability:    0.8                0.01                 0.12                  0.07

Haplotype inference without parental genotype

Figure 1.2: Haplotype inference without family genotype information. Note that the alleles

(1 and 2) of the first marker are not “flipped” since the parental order is not irrelevant.

proposed a parsimony algorithm that starts with individuals whose genotypes for all

markers are all homozygous, or for whom only one marker is heterozygous. Haplotypes

are known for such individuals. Haplotypes of other individuals are estimated by

assuming the known haplotypes are the only correct ones. Since Clark’s work, much

more sophisticated methods have been developed. When there is no unique haplotype

reconstruction for an individual, haplotype inference will provide an estimate of the

probability distribution of different haplotypes for this individual, as shown in the last

row of the toy example in Figure 1.2.

1.4 The structure of this thesis

In the following chapters, I review some existing haplotype inference methods (chapter

2), present my new Bayesian method which uses a Hidden Markov Model (HMM)

(chapter 3), and show how to implement this HMM using Markov Chain Monte Carlo
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(MCMC) methods (chapter 4). During the course of this research, I learned of three

other haplotype inference methods that use an HMM; these methods are discussed in

chapter 5. In chapter 6, I compare the performance of my model with other methods.

Finally, I discuss these results and present some ideas for future research directions in

chapter 7.



Chapter 2

Review

2.1 Introduction

Since Clark’s first haplotype inference method (Clark 1990), there have been many

haplotype inference methods developed using different ideas and computational tech-

niques. In this chapter, I will mainly review those methods that are closely related

to the new methodology presented in this thesis. In the following sections, I will

review haplotype inference methods that use the EM algorithm, Bayesian methods,

and methods that directly model linkage disequilibrium. Finally I will list a few other

methods. Note that this thesis focuses on developing haplotype inference for unrelated

individuals; therefore, no family-based haplotype inference methods are reviewed.

9
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2.2 Haplotype inference using the EM algorithm

The EM algorithm (Dempster et al. 1977) is an iterative method of finding the max-

imum likelihood estimates for unknown parameters when the model includes some

latent variables, or the data set has some missing data. This algorithm consists of an

Expectation (E) step and a Maximization (M) step. At the beginning, the unknown

parameters are given some initial values. The distribution of the latent variables (or

the missing data) is then estimated using the observed variables and current estimates

for the unknown parameters. This is the E-step. In the M-step, using the estimated

distribution of latent variables, an estimate for the unknown parameter is obtained by

maximizing the expected log likelihood. These E and M steps are repeated alternately

until there is little change in the estimates of the unknown parameters. The final es-

timate will be at least a local maximum of the likelihood for the model, marginalizing

over latent variables.

Quite a few researchers, such as Excoffier and Slatkin (1995), Hawley and Kidd

(1995), Long et al. (1995), Qin et al. (2002) and Polanska (2003), have used the EM

algorithm to estimate haplotype frequencies and reconstruct haplotypes for unrelated

individuals. The general idea of these methods is as follows.

Suppose there are P people in the sample. Let G = (G1, · · · , GP ) be their geno-

types, and let H = (h1, · · · , hn) be the haplotypes in the population. If the total

number of heterozygous loci in G is Z, the maximum number of different haplotypes

need to be included in the EM algorithm is 2Z−1. Let θ = (θ1, · · · , θn) be the frequen-
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cies of those n haplotypes. Some people may have the same genotypes, even though

their haplotypes may be different. Suppose there are m different genotype classes, and

each genotype class is observed with count xi (1 ≤ i ≤ m), where
∑

i xi = P . Assume

the frequency of each genotype class is αi (1 ≤ i ≤ m), the probability of obtaining

these genotypes for all P people is,

P (genotype frequencies|α1, · · · , αm) =
P !

x1!x2! · · ·xm!
× αx1

1 × αx2
2 × · · · × αxm

m (2.1)

For genotype class i (1 ≤ i ≤ m), if there are ri different heterozygous markers,

there are wi = 2ri−1 different haplotype combinations. Therefore,

αi = P (genotype class i) =
wi
∑

j=1
P (huj

, hvj
) =

wi
∑

j=1
P (huj

)P (hvj
) =

wi
∑

j=1
θuj

θvj

In the above formula, for each j (1 ≤ j ≤ wi), uj and vj are the haplotype indexes,

1 ≤ uj , vj ≤ n. Substituting the above equation in equation 2.1, the likelihood of

haplotype frequencies is obtained as follows,

L(θ1, · · · , θn) ∝
m
∏

i=1

αxi

i ∝
m
∏

i=1





wi
∑

j=1

θuj
θvj





xi

The EM algorithm can be used to estimate the haplotype frequencies as follows.

First, assign some initial values to the haplotype frequencies, θ(0), this is the ini-

tialization step. In the E step, reconstruct haplotypes for each genotype class in a

probabilistic way, and estimate the genotype class frequencies (α
(t)
1 , · · · , α

(t)
m ) using

the genotypes and the haplotype frequencies θ(t−1), where t ≥ 1. In the M step, use

these estimated genotype class frequencies to get the MLE of θ.
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For convenience, I will refer EM methods by their software names, or by a name

related to the key idea of a method or by its author’s name, as follows: refer to

Excoffier and Slatkin (1995) as EMDECODER, Hawley and Kidd (1995) as HAPLO,

Long et al. (1995) as LONG-EM, Qin et al. (2002) as PLEM, and Polanska (2003) as

Polanska-EM.

An important issue when using the EM algorithm is that it may find only a local

maximum of the likelihood. To deal with this problem, Excoffier and Slatkin (1995)

suggests several ways of setting initial parameter values in EMDECODER. The EM

algorithm in HAPLO sets all haplotype frequency initial values equal, though this

may not solve this problem. Long-EM (Polanska 2003) randomly sets values for hap-

lotype frequencies as the starting values. In order to check if the global maximum has

been reached, Long-EM tries 1000 random initial values. The author of Polanska-EM

recommends using randomized initial values as well.

Another important issue is constraints on memory and computation time, since

the number of haplotype frequency parameters grows exponentially with the number

of heterozygous markers. In order to solve this problem, PLEM uses the idea of

Partition-Ligation (Niu et al. 2002). In fact, PLEM is the idea of Partition-Ligation in

combination with the EM algorithm. Partition-Ligation means dividing many markers

into small groups of adjacent markers (partition) and doing haplotype estimation in

each small unit, and then combining the estimated haplotypes from each unit (ligation).

This PL idea can help solve the memory problem, but the local maximum problem may

become more serious (Qin et al. 2002). In addition, PLEM uses a ‘backup-buffering’
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strategy to deal with the local mode problem. Detailed explanations and discussions

about strategies using in PLEM can be found in Qin et al. (2002).

All of the above methods can perform well to some extent. However, they have

some limitations. First, starting the EM algorithm from different initial conditions

may help get closer to the global optimum, but, the sensitivity of the final estimates

to the initial conditions is largely unknown. Second, these methods may not perform

well if the data are in low linkage disequilibrium (LD). In fact, the LD level affects

the shape of the likelihood hypersurface (Polanska 2003); that is, high LD leads to a

smooth shape for the likelihood, whereas low LD can cause a non-smooth shape for the

likelihood. In particular, when there are recombination hotspots, where the LD level

may be very low, PLEM results may not be very consistent across different partitions.

Third, missing genotypes may also affect the performance of the EM algorithm (Qin et

al. 2002), since all possible genotypes must be considered when a genotype is missing,

this may increase the memory problem.

2.3 Bayesian methods

2.3.1 Haplotype inference using Bayesian methods

This thesis research was first presented in the annual meeting of American Society of

Human Genetics in October 2004 (Sun et al. 2004). Prior to that time, only a few

Bayesian methods have been developed for haplotype inference. In particular, the fol-

lowing four algorithms use Bayesian concepts to motivate their haplotype estimators:
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the PHASE program (Stephens et al. 2001, Stephens and Donnelly 2003), HAPLO-

TYPER (Niu et al. 2002), the modified SSD method (Lin et al. 2002), and a method

using the Dirichlet process (Xing et al. 2004). In this section, I will briefly review the

main ideas behind these four models, and then investigate the prior distributions and

computational techniques used. The latter two aspects of model fitting are particularly

important in Bayesian methods.

The fundamental idea of Bayesian inference is that both the model parameters

(θ) and the observed data are considered as random variables and are modeled using

probability distributions (Gelman et al. 1995). The parameters are given a prior

distribution, P (θ), then through the likelihood function, P (Y |θ), the parameter can

be estimated from the posterior density, P (θ|Y ) ∝ P (θ)P (Y |θ). All of the above

four methods therefore treat the unknown haplotypes of each individual as random

variables. The main difference between using the EM algorithm and a Bayesian method

to do haplotype inference is whether the haplotype frequencies in the population are

treated as random variables or not. Another important common aspect of these above

four methods is that they all used Markov Chain Monte Carlo (MCMC) methods to

sample from the posterior distribution. Other common and different aspects of these

methods are summarized in Table 2.1. More details are explained below.

2.3.2 Comparing the four Bayesian methods

The HAPLOTYPER software has three key elements in its model: genotypes, hap-

lotypes and haplotype frequencies. A Dirichlet prior was assigned to the haplotype
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frequencies, and the Gibbs sampler was used to sample from the posterior distribu-

tion. Two computational tricks used are ‘prior annealing’ and ‘Partition-Ligation

(PL)’, which make the Markov Chain converge faster (Niu et al. 2002). The prior

annealing trick involves using large pseudo-counts as the initial prior for the haplotype

frequencies, to allow the Markov chain to move freely in its state space. The PL idea

here is the same as the one mentioned in the previous section (Qin et al. 2002). That

is, long sequences of markers are first divided into small segments to do the haplotype

inference, then results are combined across the small segments.

This PL idea has also been incorporated into the new version of the PHASE pro-

Method Probability Prior MCMC Trick

HAPLOTYPER P (G,H, θ) Dirichlet (θ) Gibbs PL, PA

PHASE v2.0 P (Hp|G,H
−p) Coalescent (π(·|H)) Gibbs PL

Modified SSD P (Hp|G,H
−p) Dirichlet (π(·|H)) Gibbs PL

Xing P (A,S,m,G,H, r) DP (A) Gibbs-MH -

Table 2.1: Summary of the common and different aspects of four Bayesian methods. In the

‘probability’ column, the probability model of HAPLOTYPER is P (G,H, θ) = P (G,H|θ)P (θ).

The probability model of PHASE is: P (Hp|G,H
−p) ∝ π(hp1|H−p)π(hp2|H−p, hp1). Here Hp

means the two haplotypes of person p. In the ‘trick’ column, ‘PL, PA’ means ‘partition-ligation’

and ‘prior annealing’. In the ‘MCMC ’ column, ‘Gibbs-MH’ means both the Gibbs sampler

and the Metropolis Hastings algorithm are used. In the ‘prior’ column, ‘DP’ means that the

Dirichlet process is the prior.



CHAPTER 2. REVIEW 16

gram, PHASEv2.0 (Stephens and Donnelly 2003). In the first version of PHASE

(PHASEv1.0) (Stephens et al. 2001), two approaches were introduced. One (their Al-

gorithm 2) was to use a simple Gibbs sampler with a Dirichlet prior for the haplotype

frequencies. Note, different features of the Dirichlet prior are attributed compared with

HAPLOTYPER as commented in Stephens and Donnelly (2003). Whereas the second

algorithm used a prior that approximates distributions under a coalescent model. The

key idea in PHASE is to capture the similarities between known haplotypes and unre-

solved haplotypes. It is worth mentioning that PHASE is a pseudo-Bayesian method

(Niu et al. 2002, Stephens et al. 2001, Stephens and Donnelly 2003). Specifically, that

means that the posterior distribution of the haplotypes (given the genotypes and other

quantities of interest) is not explicitly derived based on the prior and the likelihood.

Instead, the posterior is defined as the stationary distribution of a Markov chain.

Note, in this section, the PHASE program is the version corresponding to Stephens

et al. (2001) and Stephens and Donnelly (2003), it merely uses an approximate ‘coales-

cent prior’ without recombination. The version that approximates a ‘coalescent with

recombination’ (Stephens and Scheet 2005) will be reviewed in section 2.4.

The modified SSD method (Lin et al. 2002) is based on a modification of Algorithm

2 of Stephens et al. (2001). Two main modifications were made. (1) While estimating

the haplotype of a person, instead of considering haplotype sequences at all markers,

it considers only the heterozygous loci, estimates are updated merely by accounting

for the heterozygous loci of other individuals (that is, the homozygous markers are

ignored). (2) The modified SSD method allowed for missing data. With reference to
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modification (1), ignoring the homozygous markers and only considering heterozygous

loci when estimating haplotypes might not be the best strategy since the homozygous

loci may contain useful information (e.g. LD between markers) (Stephens and Donnelly

2003). Similar to Algorithm 2 of Stephens et al. (2001) and HAPLOTYPER, the

modified SSD method uses the Dirichlet prior.

Another Bayesian method was developed by Xing et al. (2004), who introduce

the concept of a pool of ancestral templates and use a Dirichlet Process as prior

for ancestral templates. Parameters for mutation rates and genotyping errors are

included in the model as well. Both the Gibbs sampler and the Metropolis Hastings

algorithm are used to sample from the posterior distribution of quantities of interest.

As remarked in Xing et al. (2004), when sampling the parameters which indicate from

which ancestral haplotype each individual inherited his (or her) genetic information,

the Metropolis Hastings algorithm can produce better results than the Gibbs sampler.

2.3.3 Comments on recombination

None of the above Bayesian methods account for recombination between markers.

HAPLOTYPER may be sensitive to recombination hotspots (Niu et al. 2002). PHASE

works well for markers that are tightly linked and when loci span large distances but

with no recombination hotspots (Stephens et al. 2001). The method of Xing et al.

(2004) explicitly assumes no recombination. This assumption of no recombination is

unlikely to be realistic for large sets of markers spanning several centimorgans. Hence,

the existence of recombination could be one reason that the Gibbs sampler does not
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work as well as the Metropolis Hastings algorithm in Xing et al. (2004). This is because,

at consecutive loci, the parameters that indicate from which ancestral haplotypes each

individual inherited the genetic information might be highly correlated. This high

correlation may make the Gibbs sampler prefer the states that are same as the previous

one, so it is hard to move to other distinct states which might be more suitable due to

the underlying existence of recombination.

2.4 Modeling linkage disequilibrium

Most of the current haplotype inference methods do not model the effect and level

of linkage disequilibrium (LD) in an explicit way (Stephens et al. 2001, Stephens and

Donnelly 2003), even though their methods are developed under the assumption of

LD. As far as I am aware, there are two methods that have considered this issue.

They are the variable order Markov model by Eronen et al. (2004) and the idea of

‘coalescence with recombination’ by Stephens and Scheet (2005). These two methods

were motivated by different ideas. The former paper was mainly motivated by the basic

definition of LD and disease risk association studies. The latter paper was motivated

by the connection between recombination and linkage disequilibrium.

2.4.1 Using a variable order Markov model

Linkage disequilibrium can be thought of as dependence (association) among mark-

ers close to each other. Since a Markov chain can model the dependence between

random variables, Eronen et al. (2004) used a Markov model to account for linkage
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disequilibrium. In order to model LD, a haplotype segment concept was introduced.

A haplotype segment is a haplotype sequence from the ith to the jth marker, denoted

as H(i, j). Unlike the other haplotype estimation methods that estimated haplotype

frequencies, Eronen et al. (2004) estimated frequencies of haplotype segments. The

probabilities (frequencies) of haplotype segments were estimated from the genotypes

according to the level of heterozygosity (that is, the proportion of individuals in a pop-

ulation that are heterozygous for a particular locus). A haplotype, H, is modeled using

a high order Markov model, that is, P (H) = P (H(1, d))
L
∏

i=d+1

P (H(i)|H(i− d, i− 1)).

Eronen et al. (2004) remarked that fixed order Markov models may not perform

very well. For order d = 1, the results are poor, but improve with increasing d initially,

then they eventually become worse, as markers span larger distances and there are few

common patterns in the segments. This is related to overfitting, since as d gets larger,

inference requires more data in the informative neighborhood of a marker. Therefore,

Eronen et al. (2004) use a variable order Markov model to account for the level of LD

at different markers and haplotypes.

In addition to the main idea of modeling LD, a couple of additional points about

this method are worth mentioning. First, no explicit assumptions about the existence

of haplotype blocks are made, but the method does assume all samples are from one

population. Second, missing genotypes were imputed based on the allele frequencies.

Third, for long haplotype segments, the idea of Partition Ligation (Qin et al. 2002, Niu

et al. 2002) is used to avoid the problem of the exponentially large number of haplotypes

associated with increasing numbers of heterozygous markers.
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2.4.2 Using a recombination model

Stephens and Scheet (2005) modified the previous version of PHASE (Stephens et al.

2001, Stephens and Donnelly 2003) by adding a feature allowing for recombination

between markers (The newer version is PHASEv2.1.1). Specifically, they used a prior

that they called ‘coalescent with recombination’. The recombination parameter is

ρ = (ρ1, · · · , ρL−1) with each ρl = 4Necl/dl, where Ne is the effective population

size, cl is the recombination rate per generation, and dl is the physical distance. The

product ρldl is a measure of LD between marker l and l + 1. In the previous version

of PHASE, a haplotype for person i was sampled from P (Hi|Gi, H−i), whereas in this

new version, sampling is based on P (Hi|Gi, H−i, ρ). The parameter ρ is updated using

the Metropolis-Hastings algorithm.

Incorporating recombination into the model increases the computation time. There-

fore, in order to speed up the algorithm, instead of modeling the recombination at all

iterations, PHASEv2.1.1 provides another choice, that is, to assume no recombination

at first, then incorporate the recombination at the final steps. As in the previous

version of PHASE, to reduce the computational cost associated with long haplotypes,

the Partition-Ligation idea was used as well.

One additional point about the newer version of PHASE (Stephens and Scheet

2005) is that imputation of missing alleles and missing genotypes are done separately.

For the case of missing alleles, the most common allele at that locus is imputed; for

the case of missing genotypes, the most common genotype at that locus is used. While

imputing the missing data, the strength of LD is not considered.
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2.5 Other methods

In addition to the above methods, there are some other methods which have used dif-

ferent techniques and assumptions for estimating haplotypes. Clark (1990) attempted

to resolve each new haplotype by drawing from the set of known haplotypes. Wang

and Xu (2003), Gusfield (2003), Brown and Harrower (2005) and Huang et al. (2005)

used the maximum parsimony (or pure parsimony) method which finds a minimum

set of haplotypes to resolve all genotypes.

Others have used perfect phylogeny, such as Chung and Gusfield (2003), Bafna et

al. (2003) and Damaschke (2003). The basic idea of perfect phylogeny (Hudson 1990)

is that under the assumption of no recombination, each genetic sequence is from one

single ancestor in the previous generation. As summarized in Gusfield and Orzack

(2005), the perfect phylogeny haplotype problem is: given a set of genotypes, G, find

a set of haplotypes, H, which define a perfect phylogeny. However, as mentioned in

Halperin and Eskin (2004), only common haplotypes (rather than the full haplotype

set) fit the perfect phylogeny. The idea of considering common and rare haplotypes

differently is implemented using imperfect phylogeny method. Note that all of these

methods will not be discussed in detail since these methods are not directly related to

the method presented in this thesis.
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Haplotype inference using an

HMM

Today’s genetic information is inherited from many generations of ancestors. There-

fore, all current haplotypes and genotypes can be assumed to descend from some

ancestral haplotype set. These ancestral haplotypes form the hidden building blocks

of the haplotype inference model in this thesis. Through repeated recombinations

and mutations, ancestral haplotypes can yield many different haplotypes over genera-

tions (http://www.hapmap.org/). In this thesis, A Hidden Markov Model (HMM) is

used to incorporate the idea of ancestral haplotypes, recombinations and mutations,

and estimate the haplotypes of unrelated individuals based on their genotypes. Brief

knowledge about a Hidden Markov Model is reviewed in the next section, before it is

applied to haplotype inference.

22
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3.1 Hidden Markov Models

The Hidden Markov Model was originally introduced in the late 1960s and early 1970s

(Baum and Petrie 1966, Baum and Eagon 1967, Baum and Sell 1968, Baum et al.

1970, Baum 1972). It was first applied in speech signal processing in Baker (1975).

Later it was widely applied in many areas, such as economics (Albert and Chib 1993),

signal processing (Juang and Rabiner 1991), image analysis (Romberg et al. 2001), and

biology, especially genetics (Churchill 1989, Kruglyak et al. 1996, Liu et al. 1999, Daly

et al. 2001, Siepel and Haussler 2004).

The basic idea of Hidden Markov models is that there are hidden sequences under-

lying the observed ones. These hidden sequences have a Markov structure. There are

three fundamental problems using a Hidden Markov model (Baum and Petrie 1966).

They are calculating the probability of the observed sequences given a hidden Markov

model (evaluating, also called inference); finding the most likely hidden sequences that

generated the observed sequences (decoding, also known as maximization); estimating

the parameters of a hidden Markov model (learning, or called estimation). Usually the

learning and evaluating problems can be solved using the Forward-Backward algorithm

(Baum et al. 1970), the decoding problem can be solved using the Viterbi algorithm

(Viterbi 1967). In this thesis, the Forward-Backward algorithm is used. Therefore,

the definition of a hidden Markov model and the Forward-Backward algorithm will

be reviewed. The following material is based on Koski (2001), Rabiner (1989), Scott

(2002), the web notes of Professor Roger Boyle (www.comp.leeds.ac.uk/roger/).
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In a Hidden Markov Model, there are hidden states, Xn ∈ {1, · · · , N}, and the

observations, Yn ∈ {1, · · · , M}. The hidden states are modeled using a Markov struc-

ture defined by the initial distribution of hidden states and the transition distributions

between two successive hidden states. The relations between the hidden states and

observed states are modeled using emission probabilities. The following notations are

used. π is the initial distribution of hidden states, i.e. π(i) for 1 ≤ i ≤ N . The transi-

tion probabilities between hidden states are written as ai,j = P (xn+1 = j|xn = i), for

all 1 ≤ i ≤ N, 1 ≤ j ≤ N . The emission probabilities between the hidden states and

the observed states are written as bj,k = P (yn = k|xn = j), that is the probability of

observing yn = k when the hidden state is xn = j, 1 ≤ k ≤ M, 1 ≤ j ≤ N .

The recursive Forward-Backward algorithm was originally developed by Baum et

al. (1970). The basic idea of this algorithm is explained as follows. If a sequence

of symbols, {y1, · · · , yp}, is observed, then the computational cost of calculating the

probability of the observed sequence (P (y1, · · · , yp)) by summing over all possible

hidden states at each time n, 1 ≤ n ≤ p, is exponential in p. Instead, using the Forward-

Backward algorithm, this probability can be calculated as follows: P (y1, · · · , yp) =

N
∑

i=1
αn(i)βn(i). In this formula, αn(i) is the probability of obtaining the observed

sequences up to time n and ending in hidden state i. That is,

αn(i) = P (y1, · · · , yn, xn = i)

βn(i) is the probability of obtaining the observed sequences from time n + 1 to time p

given that the hidden state is i at time n. That is,
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βn(i) = P (yn+1, · · · , yp|xn = i)

αn(·) and βn(·) are called the forward variables and backward variables respectively.

They can be calculated recursively. For the forward variables, when time n = 1,

α1(i) = π(i)bi,y1 . For n > 1, αn(i) =

[

N
∑

j=1
αn−1(j)aj,i

]

bi,n. Similarly, for the backward

variables, since there is no observed data after time p, βp(i) = 1, (1 ≤ i ≤ N). For the

times n < p, βn(i) = bi,n+1

N
∑

j=1
ai,kβn+1(k).

The Viterbi algorithm is used to find the most probable sequence that generates

the observed sequences. It uses a recursive method similar to the Forward-Backward

algorithm, but with a maximization step instead of summation over all possible hidden

states. Since the Viterbi algorithm is not used in this thesis, no details are reviewed

in this chapter. In fact, in this thesis, instead of finding the most probable hidden

sequence, I sample from its distribution using the Forward-Backward algorithm as

shown later in Chapter 4 (section 4.4).

3.2 The Hidden Markov Model of haplotype inference

In order to describe the hidden Markov model, key parameters and their notations

will be introduced first. Observed genotypes (G) and unobserved haplotypes (H) are

elements that have descended from ancestors. H is modeled using a set of ancestral

haplotypes. Ancestral haplotype indexes (S) indicate from which ancestral haplotypes

each individual inherited his (or her) genetic information. Present-day haplotypes are

derived from the ancestral haplotypes through recombinations and mutations. Hence,
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recombination and mutation rates have been built into this model, with notations T

and m, respectively. Since ancestral haplotypes may vary in frequencies of occurrence,

another set of parameters Q has been introduced to denote the probability of randomly

choosing an ancestral haplotype given that a recombination occurred between two

consecutive loci. Finally, a genotyping error rate, e, allows allele differences between

genotypes (G) and haplotypes (H). Details about the above parameters are given in

Table 3.1.

Relationships between ancestral haplotypes and present-day haplotypes and geno-

types are modeled using a Hidden Markov Model (HMM), as shown in Figure 3.1. In

this Hidden Markov Model, Genotypes (G) are the only observed elements, and the

goal of building this model is to infer the haplotypes H for each person. The structure

in Figure 3.1 enables the joint probability of the model to be expressed as the prod-

uct of several conditional probabilities. For example, genotyping error e influences

only the relationship between G and H. Hence, the joint probability of all quantities

(A, S, T, Q, m, H, G, e) in this Hidden Markov Model can be written as

Prob = P (T )P (Q)P (m)P (A)P (S|T, Q)P (G|H, e)P (H|A, S, m)

= P (T )P (Q)P (m)P (A)P (S|T, Q)





P
∏

p=1

L
∏

l=1

P (Gp,l|Hl,p, e)



×





P
∏

p=1

2
∏

h=1

L
∏

l=1

P
(

Hh,l,p|A(Sh,l,p),l, m
)



 (3.1)

To illustrate the hidden Markov model and the above joint probability, a toy exam-

ple is given in Figure 3.2, in which the genotype data set consists of two people, each

with six loci. There are three ancestral haplotypes (ch1, ch2 and ch3) in A. For person
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G: 2× P × L matrix of observed genotypes.

Gp,l: the genotype pair of person p at locus l.

H: 2× P × L array of unobserved haplotypes.

Hh,l,p : the haplotype allele of person p at locus l, on chromosome h.

A: C × L matrix for C unobserved ancestral haplotypes.

Ac,l : the allele of ancestral haplotype c at locus l.

S: 2× P × L array for unobserved indexes of ancestral haplotypes.

Sh,l,p : the ancestral haplotype index for haplotype h of person p at locus l.

T : a vector of L− 1 transition probabilities.

Tl: probability of S staying with the same ancestral haplotype

between locus l and l + 1.

Q: C × L matrix of probabilities for selecting different ancestral

chromosomes when recombination occurs.

Qc,l: the probability of selecting ancestral haplotype c at locus

l when recombination happens at l (l > 1).

Qc,1: the probability of picking chromosome c at the first locus.

e: the genotyping error rate that explains G−H inconsistencies.

m: the mutation rate, either a single number, or a vector of length L,

or a matrix of size C × L.

Table 3.1: Notations for key elements in the haplotype inference model. In total, there are P

people, L loci and C ancestral haplotypes. The index h (h = 1, 2) refers to the first and the

second haplotype of each person, where parental origin order is arbitrary.
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Figure 3.1: The Hidden Markov Model for haplotype inference

p1, the chromosome index S shows that two haplotypes are inherited entirely from an-

cestral chromosome ch1 and ch2, respectively, without recombination and mutation.

For person p2, the first part of haplotype h1 is inherited from ancestral haplotype

ch2, but a recombination occurs between locus 4 and 5, so the rest of this haplotype

is inherited from ancestral haplotype ch3. The second haplotype h2 of person p2 is

inherited from ancestral haplotype ch1, but, there is a mutation at the first locus

changing the allele from 1 to 3. For the fifth locus of person p2, the haplotype pair

is (2, 2), but the genotype is (4, 2) due to a genotyping error. (0, 0) denotes a missing

genotype. Note that allele differences between (A, S) and H can be explained by mu-

tations. Differences between G and what is expected from (A, S) can be explained by

either a mutation or a genotyping error.
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It is worth emphasizing that in this model, the mutation and recombination pa-

rameters do not represent the commonly used definitions of these quantities. Mutation

rates or recombination rates are usually defined as the rate of new mutation or recom-

binations in a single meiosis. However, the HMM parameters are designed to capture

haplotype patterns that evolved over many generations. Similarly, the ancestral hap-

lotypes are not necessarily the real haplotypes of ancestors of the set of individuals.

In this Hidden Markov Model shown in Figures 3.1 and 3.2, every element above

the long dashed line is unobserved (“hidden”), and the genotypes (G) are the only

observed elements. Haplotypes (H) are latent variables, and A, T, Q, m and e are

unknown parameters. The hidden index sequences, (S), are the states of the hidden

Markov chain. In order to do inference on haplotypes (H), a Bayesian approach has

been used. Prior distributions are assigned to unknown parameters A, T, Q, and m.

Currently the parameter e is fixed to be a constant. The posterior distributions of

these unknown parameters are calculated using Bayes’ theorem. The indexes S can be

estimated using the Forward-Backward algorithm which will be explained in the next

chapter. After obtaining the posterior estimates for all other parameters (A,S,T,Q,m),

haplotypes (H) can be reconstructed; the estimation of H will also be explained in

detail in the next chapter. In the following sections, I will present the models for

A, T, Q, S, m, e, and explain how the model copes with missing genotypes.
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Figure 3.2: A toy example illustrating how today’s haplotypes (H) and genotypes (G) were

inherited from unobserved ancestors (A). See text for detailed descriptions.

3.3 The ancestral haplotypes, A

In my initial algorithm, a prior was assumed for ancestral haplotypes (A) in which

each marker locus and each ancestral haplotype are modeled as independent. That

is, P (A) =
C
∏

c=1

L
∏

l=1

P (Ac,l), with P (Ac,l) = 1/Nl, where Nl is the number of possible

alleles at locus l. This simple model works well for data sets with a small number

of loci (e.g. less than 15) and low haplotype diversity. However, for a large number

of markers with different levels of linkage disequilibrium (LD), this model may not

always perform well. Therefore, in later work on SNP markers (with only 2 alleles), a

high-order Markov model of order d was used as a prior distribution for A. This helps
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to account for linkage disequilibrium between loci. For an order d Markov model, the

probability of A is then:

P (A) = P (A1, · · · , Ad)
L
∏

l=d+1

P (Al|Al−1, · · · , Al−d) (3.2)

There are 2d possible allele combinations at d consecutive SNP markers. At locus

l, let the probability of seeing allele 1, conditional on the ith (i = 1, · · · , 2d) allele

combination at the d previous loci, be pi. The probability of allele 2 is 1− pi. Each pi

is independently given a Beta(a1, b1) prior distribution, with density denoted as f(pi).

At each locus l, the observed counts of the 2d+1 possible ancestral haplotypes at the

d + 1 loci (l − d, · · · , l) are denoted as x1
1, x

2
1, x

1
2, x

2
2, · · · , x1

2d , x
2
2d . Thus, we obtain

P (Al|Al−1, · · · , Al−d, p1, · · · , p2d) = p
x1
1

1 (1− p1)
x2
2 , · · · , p

x1
2d

2d (1− p2d)
x2
2d (3.3)

After integrating out the pi parameters, i = 1, 2, · · · , 2d, denote the second part of

equation (3.2),
L
∏

l=d+1

P (Al|Al−1, · · · , Al−d), as II. In fact,

II =
L
∏

l=d+1

∫ 1

0
· · ·

∫ 1

0
f(p1), · · · , f(p2d)P (Al|A(l−d):(l−1), p1, · · · , p2d)

=

L
∏

l=d+1

[

Γ(x1
1 + a1)Γ(x2

2 + b1)

Γ(x1
1 + a1 + x2

1 + b1)
· · ·

Γ(x1
2d + a1)Γ(x2

2d + b1)

Γ(x1
2d + a1 + x2

2d + b1)

]

(3.4)

In the above formula, the probabilities for the first d loci have been separated

out from the probabilities for loci d + 1 and higher. These loci can be incorporated

into the same model by assuming the existence of hypothetical “previous” loci, −(d−

1), ...,−1, 0, where each locus carries the same allele, say all carry allele 1. For example,

if d=4, when looking at loci l = 1, 2, 3, and 4, we assume the existence of loci−3,−2,−1
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and 0 loci all carrying allele 1. With this assumption, the above formula (3.2) can be

modified to:

P (A) =
L
∏

l=1

[

Γ(x1
1 + a1)Γ(x2

2 + b1)

Γ(x1
1 + a1 + x2

1 + b1)
· · ·

Γ(x1
2d + a1)Γ(x2

2d + b1)

Γ(x1
2d + a1 + x2

2d + b1)

]

(3.5)

The number of ancestral haplotypes, C, and the order of the Markov model d are

fixed as constants. For a data set with a small number of markers and low haplotype

diversity, C = 4 to 8 will suffice. For data sets with a large number of markers and

diverse haplotypes, larger C values would likely give better performance. Values of d

between 1 and 4 may be appropriate, depending on the degree of linkage disequilibrium

(LD).

The prior for ancestral haplotypes A in Equation (3.5) is derived for single nu-

cleotide polymorphism (SNP) markers only. However, it could be extended to mi-

crosatellite (multiallelic) markers as well.

3.4 The recombination parameter, T

When genetic information is passed on from one generation to another, two homologous

chromosomes may recombine and exchange segments during the early stages of cell

division. This is the definition of recombination over one generation. In this Hidden

Markov Model, there are many generations between today’s sampled individuals and

their ancestors. A parameter, T, accounting for all recombinations over generations,

has been used. Specifically, at locus l, let Tl be the probability that the ancestral

haplotypes do not recombine. Between each locus l and l + 1, the total number of
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sampled ancestral haplotype indexes in S that retain the same ancestral haplotype as

at locus l is assumed to follow a binomial distribution with probability Tl. Tl is given

a conjugate prior Beta(a, b), with a and b selected to make the prior of T favor values

close to 1, since recombination is unlikely over short distances. Note that 1 − Tl can

be interpreted loosely as the cumulative recombination rate over all the hypothetical

generations between today and many generations ago. It should not be interpreted

in the same way as the usual recombination fraction. Therefore, Tl is not necessarily

constrained to be greater than 0.5, and can range between 0 and 1.

3.5 Ancestral haplotype probabilities, Q

When a recombination happens between locus l − 1 and l, the probabilities of se-

lecting each ancestral haplotype at locus l is assumed to be Ql = (Q1,l, · · · , QC,l).

When an ancestral haplotype does recombine between l− 1 and l in S, the number of

copies of ancestral haplotype c that are selected is assumed to be a random variable,

Yc,l, (c = 1, · · · , C). For each locus l, (Yc,l, · · · , YC,l) is assumed to follow a multinomial

distribution with probabilities Q1,l, · · · , QC,l. These probabilities are given a Dirich-

let prior which is the conjugate prior for the multinomial distribution. Specifically,

Dirichlet (1/C, · · · , 1/C) is used as the prior for the C ancestral haplotypes in Ql. At

the first locus, there is no recombination involved. Let the number of each ancestral

haplotype selected at the first locus also be a random variable Yc,1 (c = 1, · · · , C).

This vector of C variables is also assumed to follow a multinomial distribution with

probabilities Q1,1, · · · , QC,1. Similar to the other loci, these probabilities are given the
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same Dirichlet prior. The Dirichlet distribution is a flexible choice for this prior since

it permits multiple symmetric and asymmetric modes.

3.6 The hidden Markov chain, S

The hidden sequences (S) indicate from which ancestral haplotypes each individual

inherits genetic information. For example, for the haplotypes of person p, suppose the

two hidden sequences of Sp are as follows:

S1,1:L,p: ch1 ch1 ch1 ch1 ch1 ch1 ch1 ch1

S2,1:L,p: ch2 ch2 ch2 ch2 ch2 ch3 ch3 ch3

This means, for person p, the alleles on the first haplotype are inherited from ances-

tral haplotype ch1; the alleles on the second haplotype are inherited from ancestral

haplotype ch2 for the first 5 markers, and the rest of the alleles are inherited from

ch3. For each person, the hidden sequence (Sh,1:L,p, h = 1, 2) forms a hidden Markov

chain with the initial distribution P (Sh,1,p = c) = Qc,1, (h = 1, 2, c = 1, · · · , C) and

the transition probabilities given below:

P (Sh,l,p = chi → Sh,l+1,p = chj |Tl, Ql+1) =











Tl + (1− Tl)Qchj ,l+1 if chi = chj

(1− Tl)Qchj ,l+1 if chi 6= chj

(3.6)

Therefore, the conditional distribution of the entire set of sequences (S|T, Q) is:

P (S|T, Q) =
P
∏

p=1

2
∏

h=1

[

P (Sh,1,p|Q1)
L−1
∏

l=1

P (Sh,l,p → Sh,l+1,p |Tl, Ql+1)

]
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3.7 The mutation rate, m

In a living cell, many changes or mutations may occur within the deoxyribonucleic acid

(DNA), the genetic material of a gene. There are several different types of mutations

such as single base substitutions (a base is replaced by another), insertions (a base is

added to the DNA of a gene), deletions (a base is removed from the genetic material

of a gene), duplications (a part of the genome is doubled) and translocations (a small

piece of a chromosome has been transmitted to nonhomologous chromosome).

In this Hidden Markov Model, the possible mutation processes have been simplified

to allele substitutions. In fact, the underlying model assumption is that, for any

marker, there is a list of possible alleles. For SNPs, there are two possible alleles, and

for microsatellite markers, there may be Nl (Nl ≥ 2) alleles. For a given mutation rate

m, a sampled haplotype allele Hh,l,p may carry any of the possible alleles at locus l

with the probabilities shown in the following model:

P (Hh,l,p|Al, Sh,l,p, m) =











1−m if ASh,l,p,l and Hh,l,p are consistent

m
Nl−1 if ASh,l,p,l and Hh,l,p are inconsistent

(3.7)

The goal of introducing this parameter is simply to explain visible allele differences

between ASh,l,p,l and Hh,l,p. Hence, this ‘mutation’ concept explains differences be-

tween A and H that may be due to a real mutation many generations ago, or may be

due to other chromosomal rearrangements and recombinations. The parameter m can

not be interpreted as per-meiosis mutation rate.

In the above formula, the mutation rate can be modeled in the following four

different ways: (1) m is fixed as a constant, e.g. m = 0.0005, (2) m is a random variable
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for the whole data set, i.e. one mutation rate for all loci, (3) mutation rates vary by

locus, that is, the mutation rate m is a vector of length L, m = (m1, m2, · · · , mL), with

ml as the mutation rate for locus l. (4) mutation rates vary by ancestral haplotype

and by locus, therefore, the mutation rate m is a C × L matrix m = (mc,l) with mc,l

being the mutation rate of ancestral haplotype c at locus l. To simplify the notation,

for the options (2), (3) and (4), the following notations, ‘m.one’, ‘m.l’ and ‘m.cl’ are

used respectively. For the ‘m.one’ model (option (2)), the overall mutation rate m is

assigned a prior Beta(am, bm). For the ‘m.l’ model (option (3)), this mutation rate is

a vector of length L, i.e. a mutation rate is assigned to each locus. At each locus l, the

mutation rate ml is given a Beta(am, bm) prior. Finally, for the ‘m.cl’ model (option

(4)), at each locus l, (l = 1, · · · , L) of each ancestral haplotype c, (c = 1, · · · , C), the

mutation rate mc,l is assumed to follow a Beta(am, bm) prior.

In the ‘m.l’ and ‘m.cl’ models, the priors for the mutation rate of each locus and

each ancestral haplotype are assumed to be the same. For a real data set, if information

about mutation rates were known for different markers, then the Beta priors could be

chosen to incorporate this information. The parameters am and bm are chosen to favor

values close to zero since mutations are relatively rare. Only the last three mutation

models will be used, since the first one (with fixed mutation rate for all loci) is not a

reasonable choice for real genetic studies.
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3.8 The genotyping error rate, e

Although recombination and mutation can explain the connections between ancestral

haplotypes and current haplotypes, any inconsistencies between haplotypes and geno-

types can not be explained by these parameters. Such inconsistencies are deemed to

be measurement errors in this HMM model. In fact, all large genotype data sets are

likely to contain some genotype measurement errors (Sobel et al. 2002), with error

rates depending on marker type and technology used. Several authors have mentioned

that even a small genotyping error rate may have a large impact on the statistical

genetic analysis. A few studies, like Buetow (1991) and Abecasis et al. (2001), have

shown the impact of genotyping error rate on linkage analysis, and Kirk and Cardon

(2002) and Quade et al. (2005) have studied the impact of genotyping error on hap-

lotype frequency estimation and haplotype reconstruction. Therefore, the genotyping

error is also incorporated in this hidden Markov model.

Before presenting the genotyping error model, let us briefly introduce different

types of genotyping error. Generally speaking, there are two types of genotyping errors:

Mendelian-consistent errors (genotypes are consistent with inheritance patterns) and

Mendelian-inconsistent errors (genotypes are not consistent with inheritance patterns

in families). These errors could be due to errors in allele calling, incorrect data entry,

interpretation and so on. Sobel et al. (2002) summarized five types of genotyping

errors: (1) missing an allele, (2) misreading an allele, (3) jointly misreading both

alleles, (4) adding an allele and (5) pre-gel errors, and they produced an ‘empirical
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penetrance model’ for the genotyping error in family studies. However, their method

does not apply to data on unrelated samples (Kirk and Cardon 2002).

For unrelated individuals in the Hidden Markov Model, the inferred haplotype alle-

les are assumed to be the “true” genotypes. If the observed genotype is not consistent

with the inferred haplotype alleles, this is considered to be a potential “genotyping

error” and the following model (Sobel et al. 2002) can be used:

P (Gl,p|Hl,p, e) =











1− e if Gl,p and Hl,p are consistent

e
w−1 if Gl,p and Hl,p are inconsistent

(3.8)

Here e is the genotyping error rate (currently fixed at e = 0.001), and w is the total

number of all possible genotypes at locus l. If at locus l, there are Nl possible alleles,

then w = Nl +
(

Nl

2

)

.

If more detailed information about a marker type and the technology used for

genotyping at a specific locus is known, then the genotype error could be modeled in

a more specific way. For example, if there is genotyping error at a SNP marker which

is called as homozygous ‘AA’, then the true genotype is more likely to be ‘AB’ than

‘BB’.

3.9 Dealing with missing data

Observing some missing genotypes is a common phenomenon in genetic studies, es-

pecially for large genotype collections, this is because obtaining more complete geno-

types involves trade-offs between quality and quantity within certain budgets (Liu

et al. 2006). Therefore, dealing with missing genotypes and estimating their effects
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are necessary in genetic studies, especially in haplotype estimation (Kelly et al. 2004)

and haplotype analysis (Zhao et al. 2002, Becker and Knapp 2005, Liu et al. 2006).

The usual way of handling missing genotypes for haplotype reconstruction is to as-

sume explicitly or implicitly that they are missing at random (Excoffier and Slatkin

1995, Stephens et al. 2001, Kimmel and Shamir 2005, Rastas et al. 2005, Scheet and

Stephens 2006).

In this Hidden Markov Model, the missing genotypes are also assumed to be missing

at random. Generally, there are two types of missing genotypes. One type has only one

allele missing, another type has both alleles missing. I treat these two cases as though

the genotypes of both alleles are missing. For a specific Gp,l = (0, 0) (i.e. genotype

missing), P (Gp,l|Hl,p, e) = 1, and then, P (Gp,l|Al, Sl,p, m) = 1. When the genotype is

missing, the alleles of this genotype are determined by the haplotype. The probability

of Gp,l given (Al, Sl,p) is the sum over all possible haplotype allele pairs, so it is 1

as well. Therefore, the haplotype and genotype allele pair estimation will be based

on the posterior samples obtained from the ancestral haplotype (A) and ancestral

haplotype index (S), that is, the haplotype (genotype) allele pair is estimated based

on the conditional probability P (Hl,p|Al, Sl,p, m).



Chapter 4

Markov Chain Monte Carlo

methods

4.1 The overall algorithm

The joint probability of all quantities in the haplotype model of chapter 3 is:

Prob = P (T )P (Q)P (m)P (A)P (S|T, Q)P (H|A, S, m)P (G|H, e)

= P (T )P (Q)P (m)P (A)P (S|T, Q)×




P
∏

p=1

2
∏

h=1

L
∏

l=1

P
(

Hh,l,p|ASh,l,p,l, ml

)









P
∏

p=1

L
∏

l=1

P (Gp,l|Hl,p, e)





It would be difficult to sample A, S, T, Q and m from the conditional distribu-

tion given G, which distribution is derived from the above joint probability directly.

Instead, a Markov chain that will converge to the conditional distribution (given G)

is defined. The Metropolis-Hastings sampler (Metropolis et al. 1953, Hastings 1970)

40
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and the Gibbs sampler (Geman and Geman 1984, Gelfand and Smith 1990) are two

usual ways of defining such a Markov Chain. Let Z = {Z1, · · · , Zn} with a probability

distribution P (Z1, Z2, · · · , Zn). The general idea of the Metropolis-Hastings algorithm

is to propose a change to the components of Z, acception or rejection is based on how

will this affect the probability of the Markov chain state. The basic idea of the Gibbs

sampler is to sample each element by conditioning on all the other elements. That is,

sample Zt
i from P (Zt

i |z
t
1, · · · , zt

i−1, z
t−1
i+1 , · · · , zt−1

n ). In this thesis, A, T, Q and m are

updated using the Gibbs sampler. To make the Markov chain converge faster, S is

updated using the Forward-Backward algorithm.

At each step of the Markov chain, the simplest version of the overall algorithm is:

Step 1. Update ancestral haplotypes A using the Gibbs sampler to sample from the

posterior distribution of each Ac,l with all the other quantities fixed, where c = 1, · · · , C

and l = 1, · · · , L.

Step 2. Update S using the Forward-Backward algorithm.

Step 3. Update T and Q by sampling from P (Tl|Sl:(l+1), Ql+1), where l = 1, · · · , L−1,

and P (Ql|Sl:(l+1), Tl−1), where l = 2, · · · , L, respectively. For Q1, it is sampled from

P (Q1|S1).

Step 4. Update m by sampling from P (m|A, S, H).

In the following sections, I will explain how to use the Gibbs sampler to update each

key parameter. To make the Markov chain that samples A, S, T, Q and m converge

faster, haplotypes (H) are integrated out of the model, this will be discussed first in

section 4.2. Modeling and updating A, S, T, Q, m will be presented in sections 4.3-
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4.6. Estimating the prior parameters for recombination and mutation will be shown

in section 4.7. Improvements for convergence will be discussed in 4.8. Methods for

estimating haplotypes (H) for each individual will be described in section 4.8.

4.2 Summing over H

In the above Hidden Markov Model of Figure 3.1, the haplotypes of all people, H,

are elements of the model that lie between (A, S) and G. Thus, on one side, (A, S)

determines H; on the other side, H is closely related to G, since H determines the

probability of G. In such situations, convergence of the Gibbs sampler may be very

slow. Hence, haplotype parameters (H) have been integrated out by summing over all

the possible N2
l allele combinations, where Nl is the total number of alleles at locus

l. The following is the joint probability of the hidden Markov model after integrating

out H:

P (A, S, G, T, Q, m, e)

=
∑

H

P (A, S, H, G, T, Q, m, e)

= P (T )P (Q)P (A)P (S)P (m)

[

∑

H

P (H|A, S)P (G|H)

]

= P (T )P (Q)P (A)P (S)P (m)





∑

H

∏

p,l

P (Hl,p|Al, Sl,p, m)P (Gl,p|Hl,p, e)





= P (T )P (Q)P (A)P (S)P (m)×




∏

p,l

∑

Hl,p

P (Hl,p|Al, Sl,p, m)P (Gp,l|Hl,p, e)



 (4.1)
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The order of the sum and product can be switched in the last line of Equation (4.1)

because the P individuals are independent and the L loci are independent after con-

ditioning on A and S.

Although estimating H is the primary goal of this thesis, the gain in speed of con-

vergence by eliminating H from the likelihood is extremely beneficial. The parameters

H are then estimated by sampling from the converged chain (sections 4.9, 4.10).

4.3 Updating A by summing over S

The set of ancestral haplotypes (A), is an essential element in this model. A is updated

by integrating out all possible S, similar to the arguments in section 4.2, elimination

of S from the likelihood can speed up convergence by improving the mixing of A in

the Markov chain. For each element Ac,l, integrating out S implies summing over

all (C2)L possible values of S. This would be computationally infeasible, even for

a data set with only a small number of markers. To overcome this computational

difficulty, the Forward-Backward algorithm has been used. Let f [v, l, p] be the prob-

ability, of summing over all possible ways of, reaching state Sl,p = v = (chi, chj) at

locus l of person p. For the first locus, f [v = (chi, chj), 1, p] = Qchi,1Qchj ,1. This

is the Forward step (Equation 4.2). Let g[v, l, p] be the probability of obtaining all

the states conditioning on Sl,p = v = (chi, chj) after locus l. For the last locus,

g[v, L, p] = P (no genotypes|Sl,p) = 1. This is the Backward step (Equation 4.3).

(Note, a technique from Scheet and Stephens (2006) is adopted to reduce computation
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time by reducing the necessary summation from O(C4) to O(C2)).

f [v, l, p] =
∑

S1:(l−1),p

P (Gp,1:(l−1)|A1:(l−1), S1:(l−1),pP (Sl,p = v|Sl−1,p)

=
∑

w

f [w, l − 1, p]P (Sl,p = v|Sl−1,p = w) (4.2)

g[v, l, p] =
∑

S(l+1):L,p

P (Gp,(l+1):L|A(l+1):L, S(l+1):L,pP (Sl,p = v, S(l+1):L,p)

=
∑

u

g[u, l + 1, p]P (Sl+1,p = u|Sl,p = v)P (Gp,l+1|Au,l+1) (4.3)

In the above formulas,
∑

u

(or
∑

v

,
∑

w

) means summing over all all those C2 different

ancestral haplotype combinations, that is u = (chi, chj), 1 ≤ i, j ≤ C. After summing

over all possible S for each person, the joint probability of A and G given fixed T, Q, m

and e is given in Equation 4.4. A toy example of using the Forward-Backward algorithm

to sum over all possible S is given in Figure 4.1.

P (A, G) = P (A)

P
∏

p=1

P (Gp|A)

= P (A)
P
∏

p=1







∑

all Sp

P (Gp|A, Sp)P (Sp)







= P (A)
P
∏

p=1

[

∑

v

f [v, l, p]P (Gp,l|Al, Sl,p = v)g[v, l, p]

]

(4.4)

The Gibbs sampler updates A based on the following conditional probabilities:

P (Ac,l|other elements of A, G) ∝ P (G|A)P (Ac,l, other elements of A) (4.5)

The probability of A in th above Equation is calculated using Equation (3.5) of chapter

3; the probability of (G|A) =
P
∏

p=1
P (Gp|A) is calculated as shown in Equation (4.4).
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Figure 4.1: Forward-Backward algorithm for summing over all possible S for each per-

son (C = 2). This plot is used to illustrate the summation term of Equation 4.4,
[

∑

v

f [v, l, p]P (Gp,l|Al, Sl,p = v)g[v, l, p]

]

, with v = (chi, chj) taking all C2 cases (1 ≤ i, j ≤ C).

Therefore, each column has C2 ‘boxes’ since both f [, l, p] and g[, l, p] is a function that consider

all possible C2 choices at each locus (locus l − 1 for f [, l, p] and locus l + 1 for g[, l, p]).
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4.4 Updating S using the Forward-Backward algorithm

Although updating A by integrating out S helps get an accurate estimate of A, S is the

key element needed for estimating other parameters, such as T, Q and m. Therefore,

S needs to be updated at each iteration. Originally, the Gibbs sampler was used to

update each element of S, but the dependence between Sl and Sl+1 makes convergence

very slow when updating one element at a time. A variation of the Forward-Backward

algorithm solves this problem by sampling a new sequence Sp for each person, inde-

pendent of the previous sequence (Scott 2002).

The Forward-Backward algorithm consists the following steps: (1) The Forward

step calculates the probability of producing the observed ancestral haplotype index

(chi, chj) for person p at locus l by accumulating all the information before and up to

locus l; (2) The Backward step samples Sl,p for each locus, starting from the last locus

L, based on the probabilities calculated in the Forward step and on the rules sampled

for the later loci. For person p, at locus l, the formula for the Forward step is:

f [l, (chi, chj)] = P (Gp,l|Achi,l, Achj ,l, Sl,p = (chi, chj), l)×R

In the above formula, R of transitions is:

∑

x,y

P (Sl,p = (chi, chj)|Sl−1,p = (chx, chy))f [l − 1, (chi, chj)],

and the summation is over all C2 possible Sl−1,p = (chx, chy) at locus l − 1, where

x = 1, · · · , C and y = 1, · · · , C. For the Backward step, once a state is chosen at

locus l + 1, for example, Sl+1,p = (chi, chj), then the probability of reaching this state
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(chi, chj) from state (chu, chv) at the previous locus l is:

b[l, (chu, chv)] = f [l, (chu, chv)]P (Sl+1,p = (chi, chj)|Sl,p = (chu, chv))

A toy example of updating S with C=2 using the Forward-Backward algorithm is

given in Figures 4.2 and 4.3. In the Forward step (Figure 4.2), at each locus l, (l =

1, 2, · · · , L), there are C2 = 4 possible states for Sl,p, and at each state (for example,

state (ch1, ch1) at locus 2), there are C2 = 4 possible transitions (lines) that reach

this state. The sum of the C2 probabilities of these transitions is the probability of

reaching each state at each locus. This calculation is done forward locus by locus until

the last locus L. Figure 4.3 shows the backward step. Suppose the probabilities of

obtaining each of those C2 = 4 states at locus L are 0.1, 0.6, 0.2 and 0.1, then in the
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Figure 4.2: Forward-Backward sampling Sp− Forward step (C = 2). For example, the

probability of reaching (ch1, ch1) at locus 2 is 0.15 + 0.04 + 0.05 + 0.10 = 0.34. Further

description is in the text.
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Figure 4.3: Forward-Backward sampling Sp− Backward step (C = 2). Suppose at the last

locus (L), ancestral haplotype pair (ch1, ch2) are chosen with probability 0.6, then at previous

locus (L− 1), (ch1, ch2) is selected with probability 0.7. See text for further explanation.

Backward step (Figure 4.3), a state is sampled based on these probabilities. Suppose

(ch1, ch2) is selected. The probabilities of reaching this state from each of the C2

states at the previous locus are calculated. For example, the probabilities of reaching

this state from C2 states at locus L − 1 are 0.15, 0.7, 0.05 and 0.1, then at locus

L− 1 at state is sampled based on these probabilities. This process is repeated locus

L − 2, L − 3, · · · , 1, until a complete sequence of ancestral haplotype indexes Sp for

person p is obtained.
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4.5 Updating T and Q

After updating S, the parameters T and Q, which are closely related to S, can be

estimated. For person p, let Sh,l,p = c, Sh,l+1,p = c1, if c = c1, there are two possible

reasons:

(1) The ancestral chromosome “stays the same” as at locus l, i.e. there is no recom-

bination of ancestral haplotypes.

(2) There is a recombination between ancestral chromosomes between locus l and l+1,

and ancestral haplotype c1 = c is randomly selected with probability Qc1,l

Therefore, P (Sh,l,p = Sh,l+1,p = c) = Tl + (1− Tl)Qc,l+1, where Tl is the probability of

staying with the same ancestral haplotypes as mentioned in chapter 4. To determine

the number of ancestral chromosomes that do not recombine, an index I has been

introduced for each h, l and p. That is,

Ih,l,p =











































0 if Sh,l,p 6= Sh,l+1,p

1 with probability Tl

Tl+(1−Tl)Qc,l+1
, if Sh,l,p = Sh,l+1,p = c

0 with probability
(1−Tl)Qc,l+1

Tl+(1−Tl)Qc,l+1
, if Sh,l,p = Sh,l+1,p = c

. (4.6)

For recombination parameters, the prior of Tl is Beta(a, b). At a specific locus l,

if the number of ancestral haplotypes that do not recombine between l − 1 and l is

Xl, where Xl =
∑

h,p

Ih,l,p, then the posterior distribution of (Tl|S, Q) is Beta(a + Xl,

b + 2P −Xl).

At each locus, the prior of (Q1,l, · · · , QC,l) is assumed to be Dirichlet (1/C, · · · , 1/C).

Let the number of each ancestral haplotype selected after a recombination be Yc,l, c =
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1, · · · , C. Therefore, Yc,l =
∑

h,p

(1−Ih,l,p)I(Sh,l+1,p = c), where I(Sh,l+1,p = c) is an indi-

cator function. Then the posterior distribution is Dirichlet (1/C+Y1,l, · · · , 1/C+YC,l).

4.6 Updating m

For the mutation rate, four models were presented in section 3.7. For the first model,

the mutation rate is fixed as a constant, so there is no need to update it. For the second

model (the ‘m.one’ model), a single mutation rate is used for all ancestral haplotypes

and all loci. If the total number of inconsistent allele pairs between (Al, Sh,l,p) and

Hh,l,p is Z, so that Z =
∑

h,l,p

I(Ac,l 6= Hh,l,p, Sh,l,p = c), for h = 1, 2, p = 1, · · · , P , and

l = 1, · · · , L, then the posterior distribution of m is Beta (am + Z, bm + 2PL− Z).

For the third model (the ‘m.l’ model), a vector (m1, · · · , mL) of mutation rates is

used (i.e. one mutation rate for each locus). Similar to the second model, for locus l

(l = 1, · · · , L), if the total number of inconsistent allele pairs between (Al, Sh,l,p) and

Hh,l,p is Zl, so that Zl =
∑

h,p

I(Ac,l 6= Hh,l,p, Sh,l,p = c), for h = 1, 2, p = 1, · · · , P , then

the posterior distribution of ml is Beta (am + Zl, bm + 2P − Zl).

For the fourth model (the ‘m.cl’ model), there is a mutation rate for every locus

of each ancestral haplotype. Let Zc,l be the total number of inconsistent allele pairs

between Hh,l,p and Ac,l, where c = Sh,l,p, then the posterior distribution of mc,l is Beta

(am + Zc,l, bm + Uc − Zc,l), where Uc is the number of times that ancestral haplotype

c that has been used.

Note, in order to update m, H is sampled based on A, S and the previous mutation

rate estimate in each iteration, even though H has been integrated out as mentioned
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in section 4.2.

4.7 Using hyperparameters

The recombination and mutation parameters are assigned Beta priors of different fixed

parameters. Another option is to estimate the parameters of these Beta distributions

by assigning them a hyperprior instead of using the fixed values. In particular, for

recombination parameters, the prior of Tl is Beta(a, b). The parameters (a, b) can be

considered as variables and assigned a hyperprior for them. First, let φ = a/(a + b)

and γ = a + b, then let φ ∼ Beta(a0, b0) and γ ∼ uniform(u, v). The hyperprior (the

joint distribution) for (φ, γ) is:

P (φ, γ) =
1

v − u
I(u<γ<v)

[

Γ(a0 + b0)

Γ(a0)Γ(b0)
φa0−1(1− φ)b0−1

]

Then the hyperprior of (a, b) is:

P (a, b) =
1

v − u
I(u<a+b<v)

[

Γ(a0 + b0)

Γ(a0)Γ(b0)

aa0−1bb0−1

(a + b)a0+b0−1

]

After some simple calculations, the marginal posterior distribution of (a, b) is:

P (a, b|X) ∝ P (a, b)
L−1
∏

l=1

Γ(a + b)

Γ(a)Γ(b)

Γ(a + Xl)Γ(b + 2P −Xl)

Γ(a + b + 2P )

In the above formula, X = (X1, · · · , XL−1), and Xl is the number of ancestral

haplotypes that do not recombine between l and l + 1 (l = 1, · · · , L − 1). Variables

(a, b) can be updated using the above posterior distributions. However, there is not

a specifically analytic conditional probability function for either a or b, therefore, the
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Slice sampling (Neal 2003) method can be used. The basic principle of this sampling is

that in order to sample from the distribution of one variable, one can sample uniformly

from the region under the plot of its density function.

For the ‘m.l’ model (i.e. one mutation rate for each locus), the prior distribution

is ml ∝ Beta(am, bm). Similarly as the above, (am, bm) can be treated as variables

and assign a hyperprior to them by doing the similar variable transformation. That

is, let φ = am/(am + bm) and γ = am + bm, then let φ ∼ Beta(am0, bm0) and γ ∼

uniform(u, v). The hyperprior (the joint distribution) for (φ, γ) is:

f(φ, γ) =
1

v − u
I(u<γ<v)

[

Γ(am0 + bm0)

Γ(am0)Γ(bm0)
φam0−1(1− φ)bm0−1

]

Then the hyperprior of (am, bm) is:

P (am, bm) =
1

v − u
I(u<am+bm<v)

[

Γ(am0 + bm0)

Γ(am0)Γ(bm0)

aam0−1bbm0−1

(am + bm)am0+bm0−1

]

After some simple calculations, the marginal posterior distribution of

(am, bm) is:

P (am, bm|Z) ∝ P (am, bm)
L
∏

l=1

Γ(am + bm)

Γ(am)Γ(bm)
×

Γ(a + Zl)Γ(b + 2P − Zl)

Γ(am + bm + 2P )

For the ‘m.cl’ model (i.e. one mutation rate for each locus of each ancestral haplo-

type), similar marginal posterior distribution of (am, bm) can be obtained as follows,

P (am, bm|Z, U) ∝ P (am, bm)
C
∏

c=1

L
∏

l=1

Γ(am + bm)

Γ(am)Γ(bm)

Γ(a + Zc,l)Γ(b + Uc − Zc,l)

Γ(am + bm + Uc)

In the above formula, Z = (Zc,l) and Zc,l is the total number of inconsistent allele

pairs between Hh,l,p and Ac,l, where c = Sh,l,p. U = (Uc) with Uc denoting the number

of times that ancestral haplotype c has been used.
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Note that there is only one variable in the m.one model, no need to assign a

hyperprior for this case. Therefore, no hyperparameter is used.

4.8 Estimating haplotypes H

Sampled haplotypes for each person can be obtained from the following probabilities:

P (Hl,p|Al, Sl,p, Gp,l, m, e) =
P (Hl,p|A, S, m)P (Gp,l|Hl,p, e)

∑

Hl,p

P (Hl,p|A, S, m)P (Gp,l|Hl,p, e)
(4.7)

In the above formula, e is fixed at chosen value (e = 0.001). The mutation rate m

is one mutation rate for all ancestral haplotypes and all loci. For different mutation

models, the mutation rate term m would be specified as ml and mc,l corresponding

to third and the fourth mutation models. When the genotypes are missing, the above

formula can be simplified to P (Hl,p|Al, Sl,p, Gp,l, m, e) = P (Hl,p|A, S, m).

Methods for reconstructing the best haplotypes are discussed in section 4.10. It is

worth noting that e can be fixed to be a different value during haplotype reconstruction

from the value used during MCMC estimation. For example, if e is set to zero during

reconstruction, estimated haplotypes will be forced to match genotype data.

4.9 Improving and checking MC convergence

4.9.1 Improving the Markov chain convergence rate

In order to make the Markov chain converge faster and hence to get more accurate

results, two additional improvements have been implemented in addition to integrating
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out H and S. They are (1) a swapping of parts of two randomly selected ancestral

haplotypes to enable better mixing, and (2) improved sampling for the first locus of

Q.

For improvement (1), the algorithm for swapping two randomly selected ances-

tral haplotypes is a Metropolis Hastings update. Specifically, this swap includes the

following steps:

Step 1: At locus l, l ≥ 2, two ancestral chromosomes c1 and c2 are randomly

selected, then the first l − 1 loci of A are exchanged to get A1. Meanwhile the cor-

responding part of Q is swapped to get Q1. Note that if the mutation model is the

fourth model (one mutation rate for each locus of each ancestral haplotype), the first

l − 1 loci of the mutation matrix need to be swapped too.

Step 2: Calculate the joint probabilities before and after this change, and the ratio

of these two probabilities:

P0 = P (A, G, Q, T, m, e) = P (T )P (Q)p(m)P (A, G|Q, T, m, e)

P1 = P (A1, G, Q1, T, m, e) = P (T )P (Q1)p(m)P (A1, G|Q1, T, m, e)

P1/P0 = P (Q1)P (A1, G|Q1, T, m, e)/P (Q)P (A, G|Q, T, m, e)

Note that the prior of Q is Dirichlet(1/C, · · · , 1/C), which is a symmetric distri-

bution, therefore, P1/P0 = P (A1, G|Q1, T, m, e)/P (A, G|Q1, T, m, e)

Step 3: Determine whether to accept or reject this change by randomly sampling a

number x from unif(0, 1). The probability of acceptance is Paccept = min(1, P1/P0).

If x < Paccept, the change is accepted, otherwise, it is rejected.

For improvement (2), a Metropolis Hastings procedure was developed too. Two
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ancestral haplotypes c1 and c2 are randomly chosen, then Qc1,1 and Qc2,1 are resampled

while keeping the sum of these two probabilities invariant. For example, suppose

Qc1,1 = 0.3 and Qc2,1 = 0.1, then we might propose to change them to be: Qc1,1 =

0.4 − x and Qc2,1 = x, where 0 < x < 0.4. Similar to improvement (1), the joint

probabilities of before and after this change and the ratio of these two probabilities

are calculated:

P0 = P (A, G, Q, T, m, e) = P (T )P (Q)p(m)P (A, G|Q, T, m, e)

P1 = P (A, G, Q1, T, m, e) = P (T )P (Q1)p(m)P (A, G|Q1, T, m, e)

P1/P0 = P (Q1)P (A, G|Q1, T, m, e)/P (Q)P (A, G|Q, T, m, e)

Then the decision of acceptance or rejection is made using the strategy similar to the

one used for swapping.

4.9.2 Checking the convergence of Markov chain

To check the convergence of the Markov chain, the joint likelihood and the recombina-

tion parameters T at each iteration are plotted to look for stable patterns. When using

hyperparameters, the estimated hyperparameters of recombination and mutation can

be plotted to check convergence too.

4.10 Summarizing the posterior distribution

Sampled haplotypes can be summarized by reporting the proportions of all different

possible haplotype combinations in order to show the uncertainty of the haplotype

distributions. These proportions can be obtained directly by counting the sampled
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haplotypes. Alternatively, one can find the best single estimate of the haplotypes

for each person. Three different methods for obtaining this haplotype estimate are

introduced in this section.

The first method is a straightforward one which uses the mode of the counts of all

sampled haplotype pairs. For small numbers of markers, and for the sets of markers

in strong LD, the diversity of haplotypes is low, this method is effective. However, for

data sets with large numbers of markers or rarer haplotypes, it is likely that there will

be many different haplotype pairs each with only a small probability of occurring. In

this case, there may be no unique mode, or the mode may be a poor summary of the

results.

The second method is based on the determination of the mother-father labels of

each haplotype sample, so it is called ‘label-method’. The key idea behind this method

is that at convergence, each sampled haplotype Hr (r = 1, · · · , R) represents a possible

true haplotype. First the algorithm is presented, and details about its interpretation

follow afterwards. The label method can be implemented using the following four

steps:

Step 1: By comparing to HR (the last sampled haplotype), assign chromosome labels

hr = 1, 2 (or mother, father) to the two haplotypes of each H r, where r = 1, · · · , R−1.

That is to choose the parental labels that best matches HR, let us denote the parental

labels as (hr
1, h

r
2). The label choice of HR is arbitrary at this point.

Step 2: Define the most commonly observed allele at each locus as the estimated

haplotype allele at locus l of chromosome h, Ĥh,l.
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Step 3: Choose new labels hr for Hr to minimize the following Ilabel,

Ilabel =
R
∑

r=1

L
∑

l=1

δ(Ĥl, H
r
l )

where δ is an indicator function.

Step 4: Repeat steps 2 and 3 until Ĥ is no longer changing.

Further explanation of this algorithm follows. Labels in step 1 are assigned to

gain most similarity to haplotype pair HR. For example, for the rth sample, the label

hr
1 = 1 (or hr

1=mother) and hr
2 = 2 (or hr

2=father) implies that Hr
1 is more like HR

1

than HR
2 . If the label is hr

1 = 2 (or hr
1=father) and hr

2 = 1 (or hr
2=mother), then

the similarity match is the other way around. The comparison is made simply by

counting the number of matching alleles. The assignment of a parent (e.g. mother)

to a haplotype is a convenient way of explaining results but has no relationship to

which haplotype actually belongs to which parent. Without genotyping parents, the

parent-of-origin is unknown.

The indicator δ(Ĥl, H
r
l ) is defined as follows. If the label is hr

1 = 2 (i.e. hr
1=father)

and hr
2 = 1 (i.e. hr

2=mother), then δ(Ĥl, H
r
l ) = δ(Ĥ1,l, H

r
2,l) + δ(Ĥ2,l, H

r
1,l). If Ĥ1,l =

H2,l, δ(Ĥ1,l, H
r
2,l) = 1, otherwise, it is 0. Similarly, if Ĥ2,l = H1,l, δ(Ĥ2,l, H

r
1,l) = 1,

otherwise, it is 0. The parental labeling of Hr is switched to minimized Ilabel.

The third method, due to Scheet and Stephens (2006), is based on minimizing

the switch distance. The switch distance (Lin et al. 2002) is the number of switches

between consecutive heterozygous markers (in the inferred haplotypes) that are needed

in order to recover correct haplotypes. In order to obtain the best haplotype estimate

by minimizing the switch distance, first, all loci are classified into three different types:
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heterozygous markers, homozygous markers and genotype-missing markers. For the

markers with genotype missing, the haplotype estimates are only based on the sampled

haplotypes obtained from A and S. For the heterozygous markers, first the sampled

haplotypes (H) at each marker are checked to make sure the majority of sampled

haplotype pairs are heterozygous, and if not, report a potential G-H inconsistence, i.e.,

a potential genotyping error. Similarly, for the homozygous type, check and report any

potential genotyping error.

After finishing checking and reporting some potential genotyping errors, starting

from one side of the genetic region, estimate the haplotype of two consecutive heterozy-

gous markers based on the proportion of each haplotype combination in the sampled

H. This minimizes the switch distance. For example, if l1 and l2 are two consecutive

markers of person p with genotypes Gp,l1 = 12 and Gp,l2 = 12. Then there are two

possible genotype allele combinations for these two markers: (1) hap 1: 1 2 and hap 2:

2 1; or (2) hap 3: 1 1 and hap 4: 2 2. If the count for (hap 1, hap 2) is 10, the count

for (hap 3, hap 4) is 4, then the one (hap 1, hap 2) with higher counts is selected as

the haplotype estimate for markers l1 and l2. Then consider the next two consecutive

heterozygous marker l2 and l3, this process is repeated until the haplotypes of the last

two consecutive heterozygous markers are obtained.

Heterozygous and homozygous markers that may have a genotyping error are re-

ported. However, differently from the label-method, such G-H inconsistence loci are

only reported, but they are not included in the estimated haplotype. For a specific

locus (of some individual) that has G-H inconsistence, the haplotype alleles are just
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obtained by the random assignment of the genotypes at that locus. This will not af-

fect the whole results significantly since only a very small proportion of markers have

potential genotyping error.

In total, three methods for obtaining the best haplotype are presented in this

section. Since the first counting-based method is not good for data sets with a large

number of markers, only the last two methods are used in this thesis.



Chapter 5

Comparison with other HMM

methods

I know of three other recently published haplotype inference methods that have used

a Hidden Markov Model. They are Rastas et al. (2005) with software named HIT,

Kimmel and Shamir (2005) with software named HINT, and Scheet and Stephens

(2006) with software named fastPHASE. In this chapter I will compare these three

methods to my approach, commenting on their common features, the main differences

between my HMM method and the other three methods, and other common and

different noteworthy aspects of these models.

60
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5.1 Common features of the four HMM methods

Three main ideas are held in common among these four HMM methods. First, all

methods introduce the concept of a set of ancestral haplotypes, even though this idea

may be phrased differently. In HIT (Rastas et al. 2005) the term ‘founder haplotypes’

is used, in fastPHASE (Scheet and Stephens 2006), they are called ‘clusters’, and in

HINT (Kimmel and Shamir 2005) the phrase ‘blocky structure’ is used. All methods

assume that the current haplotypes are formed from a mosaic of ancestral haplotypes

by allowing the founder haplotypes to ‘recombine’ with each other. The introduction

of ‘recombination’ leads to the hidden Markov chain, where the ‘recombination param-

eters’ play the role of transition probabilities. The hidden Markov chain is formed by

the sequence of ancestral haplotype states, which shows from which founder haplotypes

the current haplotypes have ‘inherited’ the alleles at each locus. Between two consecu-

tive markers, when a recombination occurs, the transition probabilities (recombination

parameters) determine the exchanges between ancestral haplotypes. Note that even

though all four methods have recombination parameters, there are some differences

among them which will be described in section 5.3.

The second main common feature is that all these methods assume genotypes

are missing at random. Missing genotypes are handled by summing over all possible

genotypes in Rastas et al. (2005) and Kimmel and Shamir (2005). The method in this

thesis and fastPHASE handle this by not only summing over all possible genotypes,

but also summing over all possible ancestral haplotype states. In addition, since the
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fastPHASE algorithm focuses on imputation of missing genotypes, the imputation

approach was further refined; this will be commented on in section 5.3.

The third common aspect is that all these four methods assume implicitly or explic-

itly haplotypes are in the Hardy-Weinberg Equilibrium (HWE), that is, two haplotypes

of each individual are independent.

5.2 Main differences between my HMM method and other

HMM methods

Important differences between my HMM method and the other three HMM meth-

ods are listed in Table 5.1. The most important difference is that my method is

Bayesian-based. All the key parameters are treated as random variables and assigned

appropriate prior distributions. For example, as mentioned in the previous chapter, a

beta prior which favors values that are close to 1 was assigned to the recombination

parameters, and a beta prior which favors values close to 0 was given to the mutation

parameters. Inference in this thesis is based on the posterior distributions, that is,

it is based on both the prior knowledge and the data. The other three methods are

not Bayesian methods. They find maximum likelihood estimates using the EM algo-

rithm. Inference using these methods is based only on the data set itself, and does not

incorporate external knowledge through the priors.

A second main difference is that my HMM method uses a high order Markov

model for A to account for linkage disequilibrium in the ancestral haplotypes. None
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of the other three methods has parameters or models to account for LD in ancestral

haplotypes.

A third difference is that genotyping error was built into the hidden Markov model

to explain the inconsistencies between the haplotype pairs and the genotype pairs.

The other three methods were developed based on the assumption of no genotype

measurement error.

Finally, the fourth main difference is that in this thesis, four different types of

mutation models were developed, as described in Chapter 4, namely (1) a fixed con-

stant, e.g. m=0.005, (2) the ‘m.one’ model, that is, one mutation rate for all ancestral

haplotypes and all loci, (3) the ‘m.l’ model, that is, one mutation rate for each locus,

that is, the mutation rate is a random vector of length L, (4) the ‘m.cl’ model, that

is, one mutation rate for each ancestral haplotype and each locus, that is, a random

matrix of C rows and L columns. The other three methods do not have any explicit

mutation model built into their hidden Markov model. However, these three methods

all used the ancestral haplotype allele frequencies θc,l as parameters. That is, they use

My HMM method Other three HMM methods

Bayesian method Non-Bayesian, EM algorithms

High order Markov model for A No specific model for A

Genotyping error is built in Assume no genotyping error

Four different mutation models No explicit mutation model

Table 5.1: The main differences between my HMM method and the other HMM methods.

For more details, see the text.
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θc,l = P (Ac,l = allele 1). With θc,l included, the results of the other three methods

should be comparable to my fourth model (i.e. the m.cl model) mentioned here.

5.3 Other comments on the four HMM methods

In addition to the above major common and different features among the four HMM

methods, there are a few other aspects, listed in Table 5.2, which are worth mentioning

in this section.

Firstly, when there is a ‘recombination’ between two consecutive loci, in fastPHASE

and my HMM method, the selection of a new ancestral haplotype state at the next

locus, after a recombination, does not depend on the current state. However, in HIT

and HINT, these transitions do depend on the current state. Therefore, between each

two consecutive loci (l and l +1), HIT and HINT used C× (C− 1) parameters, and in

total, there are C×(C−1)×(L−1) parameters. Whereas fastPHASE and my method

used C parameters between two consecutive loci, with one parameter as the overall

recombination parameter (Tl) and C − 1 parameters for the probabilities of selecting

C ancestral chromosome at locus l + 1, in total there are (L− 1)× C parameters.

Secondly, these four different methods have different focuses. The algorithm behind

fastPHASE focuses on imputing missing genotypes, as well as inferring haplotypes,

HINT focuses on disease risk association studies, HIT and my HMM method mainly

focus on haplotype reconstruction. In addition, the recombination parameters of my

HMM method can be used to identify regions with high or low recombination rates.

Thirdly, to improve convergence, HINT and HIT use some initialization tricks to
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make their EM algorithms converge faster, and fastPHASE uses an ‘averaging’ scheme

by running their EM algorithm 20 times with different starting points. My method

and fastPHASE use the Forward-Backward (FB) algorithm to sum over all possible

states of ancestral haplotypes (that is to integrate out S), but HINT and HIT do not

use the procedure of integrating out S. In my HMM method, several approaches are

used to improve convergence. Haplotypes (H) are integrated out, swapping part of two

ancestral haplotypes is implemented, and Q is updated at the first locus by summing

over all possible ancestral haplotype states at locus 1.

Fourthly, HINT and HIT use the EM algorithm to estimate parameters and then

use the Viterbi algorithm to reconstruct the haplotypes. In contrast, fastPHASE

My HMM fastPHASE HIT HINT

Transition (L-1)C (L-1)C C(C-1)(L-1) C(C-1)(L-1)

Focus of HI HI, IMG HI AS

algorithm

Convergence Swap A Averaging Initialization Initialization

tricks Integrate S,H integrate S,H

Update Q1

Estimation Posterior Monte-Carlo Viterbi Viterbi

Table 5.2: Additional features that differ among the four methods. The ‘transition’ row lists

the number of transition parameters for each method. In the ‘focus of algorithm’ row, HI

= ‘Haplotye Inference’, IMG = ‘Imputing Missing Genotypes’, and AS=‘Association Stud-

ies’. In the ‘convergence tricks’ row, ‘Initialization’ means HIT and HNT used some complex

initialization tricks. For more details, see the text.
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samples the haplotype pairs based on Monte Carlo methods. When fastPHASE runs

the EM algorithm T times, the haplotype estimate is based on all T runs as well. For

this thesis, the inference is based on sampling from the posterior distribution.

Finally, even though all methods assume genotypes are missing at random, and all

four methods estimate the missing genotypes by summing over all possible genotypes,

fastPHASE imputes the missing genotypes a bit differently. They run their EM algo-

rithm T times, then the genotypes are imputed as those that maximize the average

likelihood for the parameters of all the T runs. If T=1, then all these three methods

impute missing genotypes in the same way.



Chapter 6

Results

In order to evaluate the performance of the HMM method, and to illustrate its different

features, I analyzed publicly available data sets from Daly et al. (2001) and the

HAPMAP project (The International HAPMAP Consortium (2003), (2004), (2005))

using the HMM-based method. These data sets all contain the genotypes of trio

families, in which there are two parents and one child, so the estimated haplotypes of

children can be compared to known haplotypes inferred from the parents’ genotype

information. I compare the results of the HMM method to the results obtained using

the PHASE (Stephens et al. 2001, Stephens and Donnelly 2003, Stephens and Scheet

2005) and the fastPHASE (Scheet and Stephens 2006) programs.

6.1 Data sets

The first data set is from Daly et al. (2001), which I will refer to as the Daly data.

It contains genotypes of 129 trio families. The parents and the child of each family

67
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were genotyped at 103 markers in a 500-kb region on human chromosome 5 in a study

on Crohn disease. At the time of publication, these genotypes showed some novel

patterns of genetic variation. Specifically, a small number of common haplotypes in

small blocks were discovered among the haplotypes transmitted to the individuals with

Crohn disease; there were 11 haplotype blocks identified in total, separated by regions

showing more recombinations, see Appendix A for detailed information. Two to four

different common haplotypes accounted for over 90% of all the observed chromosomes

in each block, and each block spanned 100kb or less. Time has proven that this data

exhibited low haplotype diversity and particularly strong block structure.

The CEU families (Utah residents with ancestry from northern and western Eu-

rope) and YRI families (Yoruba in Ibadan, Nigeria) are two of the data sets used in the

HAPMAP project. For the CEU data, I selected genotypes of 100 contiguous markers

in the ENCODE region 7p15.2. Most SNPs in the ENCODE region are rare and only

54% of them have minor allele frequency (MAF) ≥ 0.05. Therefore, in order to restrict

analysis to markers with only common alleles, 56 markers (with lowest MAF=0.083)

were selected for haplotype inference. The physical distance spanned by those 56 mark-

ers is approximately 100 kb (from 26700834 bp to 26804065 bp). For the YRI data, I

selected 199 markers from 37128000 bp to 37272000 bp of chromosome region 19q13,

a region highlighted for recombination hotspots (The International HAPMAP Con-

sortium 2005). In particular, there are two recombination hotspots identified by the

The International HAPMAP Consortium (hapmap.org) in the region I selected. One

is from 37128001bp to 37137001bp, with hotspot center at 37134001bp, and another
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from 37262001bp to 37272001bp, with hotspot center at 37264001bp. The beginning,

center and end of each recombination hotspot will be shown in later Figures. Similar

to the CEU data, only 91 markers (with lowest MAF=0.15) have been analyzed for the

haplotype inference, again, with the goal of restricting analysis to SNPs with common

alleles.

6.2 Evaluation of the HMM method performance

6.2.1 Evaluation criterion

So that the performance of the HMM-based method can be evaluated and compared

with other algorithms, only the children’s haplotypes in the trio family data sets are

estimated, without using parental genotypes. The haplotypes inferred for the children

can then be compared with the haplotypes inferred by the software MERLIN (Abecasis

et al. 2002), which reconstructs haplotypes based on the genotypes of the parents.

Before comparing results with other programs, I first check the performance of my

algorithm for different parameter settings (described in 6.2.2). Then I compare with

other programs using both the best single estimate of the haplotypes (the ‘mode’ of

the haplotype distributions) in section 6.2.3 and the distribution of posterior samples

in section 6.2.4.

The best single estimates of my HMM method are obtained by using the label

method and the minimizing switch distance method. (These two methods were in-

troduced in section 4.10.) For the best single estimates of each method, two criteria
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have been used to do the comparisons. First, for long sequences, moving ‘windows’ are

used to compare haplotypes inferred from the HMM method, PHASE and fastPHASE

with MERLIN estimates. The ith window is the sequence from the ith locus to the

(i + s − 1)th locus, where s represents the window size; s = 5 and s = L are used

below. When s=5, the 1st window will include loci 1-5, the 2nd window will include

loci 2-6, the 3rd window will include loci 3-7, and so on. When s=L, there is just one

window which includes loci 1 − L, that is the whole sequence. In each window, the

number of incorrect haplotype pairs is counted. Second, the switch distance criterion

(Lin et al. 2002) is used. Switch distance is the count (or proportion) of haplotype

switches between all consecutive heterozygous markers needed to recover the correct

haplotypes.

In addition to the above criteria, the number of markers with the ‘wrong’ genotype

inference has been counted and denoted as mis.G. Note that even though the number

in ‘mis.G’ is called ‘wrong’ genotype inferences, it might be that the recorded geno-

types are incorrect. This is because my HMM method incorporates genotyping error,

and in real genetic studies, it is quite possible that genotyping error exists. For miss-

ing genotypes, mis.M denotes the number of genotype pairs inferred from my HMM

method, the PHASE and fastPHASE programs that are not consistent with the ones

inferred from MERLIN.

Due to the incorporation of genotyping error, when using the label method to

obtain the best single estimate, the s=5 and s=L column counts include the ‘G-H

inconsistent’ loci. For example, in the first row of the Daly data results as shown in
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Appendix C, the ‘Not using hyperparameters” results are mis.G=3 and ‘s=L count’

= 205. If those mis.G=3 ‘G-H inconsistent’ loci are not included, ‘s=L count’ is

202 instead of 205. When counting the switch distance, those loci with the ‘G-H

inconsistencies’ are ignored, since it is hard to define the switch distance in this context.

Then at the end, some penalized error count is added to the final switch distance count

by adding one switch distance for each G-H inconsistent locus. Similar to the above

example, without adding the penalty, the switch distance count would be sw=100

instead of 103. This penalized count is only for the label method. For the minimizing

switch distance method, the potential G-H inconsistent loci are only reported, but are

not included in the final haplotype estimate as described in section 4.10.

6.2.2 Performance of the HMM method as a function of chosen pa-

rameters and models

As described in Chapter 4, several parameters play very important roles in this Hidden

Markov Model. For example, the number of ancestral chromosomes, C, and the linkage

disequilibrium modeling parameter, d, influence the model’s flexibility. Furthermore,

there are several models for the mutation parameter, and for the recombination and

mutation parameters. Also, one can choose whether to use hyperparameters or not.

In order to check which values and which models perform better, and whether the

optimal choices vary for the three data sets, the program has been run with 36 different

parameter combinations for each data set by choosing 3 levels for C (C = 5, 10, 15),

2 values for d (d = 0, 3), 3 mutation models (m.one, m.l and m.cl denote the three
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mutation models respectively), and 2 choices of whether to use hyperparameters or

not. For each of these 36 parameter combinations, the HMM program was run with

3 different random seeds. For each seed, 600 MCMC iterations were done. The best

single estimate was based on every 4th of the last 300 iterations. Two different ways of

finding the best single estimate for a run were used, namely, the label method and the

minimizing switch distance method. The results are organized into tables in Appendix

C, and Appendix B gives the values of parameters that are fixed at the same values

for all runs.

For results obtained from the models without using hyperparameters, an analysis

of variance (ANOVA) is performed to look for the effects of C, d, mutation model (m),

and best-single-estimate-method (single). Each quantity is treated as a main effect

factor. The ANOVAs are done for each of the three data sets (Daly, CEU and YRI)

by fitting the following model:

measure = C + d + m + single + C ∗ d + C ∗m + d ∗m + ε (∗)

In this model, ‘single’ refers to the two different methods for estimating the best hap-

lotypes (‘label’ means the label method, ‘sw’ means the minimizing switch distance

method). Three error counts, the window length s=5 error (s5) count, the window

length s=L error (sL) count and the switch distance (sw) count, are used as the ‘mea-

sure’ response, separately. For the models using hyperparameters, the same ANOVA

models are separately fit, again for each of the three data sets.

Small p-values (less than or equal to 0.05) from the above ANOVAs are listed in

the following tables: Table 6.1 for the Daly data; Table 6.4 for the CEU data; Table 6.7
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Factors N-s5 N-sL N-sw H-s5 H-sL H-sw

C <0.0001 <0.0001 <0.0001 0.0002 <0.0001 0.0005

d 0.014

m <0.0001 <0.0001 <0.0001 <0.0001 0.0003 <0.0001

C*d 0.022

C*m 0.007 0.031

m*d

Single <0.0001 0.0027 <0.0001 <0.0001 <0.0001

Table 6.1: Small p-values (less than or equal to 0.05) from the ANOVA of model (∗) for

the Daly data. Columns with names ‘N-s5’, ‘N-sL’ and ‘N-sw’ are p-values obtained from

the ANOVA done for the results without using hyperparameters; columns with names ‘H-s5’,

‘H-sL’ and ‘H-sw’ are p-values obtained from the ANOVA done for the results from model

using hyperparameters.

for the YRI data. In these tables, there are a few small p-values corresponding to the

interaction effects. In order to explore the interactions between different factors and

see which parameter combination can produce better results, some interaction plots

are made: Figures 6.1, 6.2 and 6.3 for the Daly, CEU and YRI data, respectively.

The cell means of different levels of each main effect (C, d, m, single) are calculated

and the pair comparisons between any two levels of each factor are done using t tests.

Results of cell mean calculation, and pairwise comparison p-values are listed in the

following tables: Tables 6.2 and 6.3 for the Daly data; 6.5 and 6.6 for the CEU data;

6.8 and 6.9 for the YRI data.

The Daly data. When not using hyperparameters (Table 6.1 columns N-s5, N-sL

and N-sw), all three measures (s5, sL and sw) consistently show that the choices of

C and of the mutation model have significant effects. Moreover, Table 6.2 shows that
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the best choices are C=10 or 15 and the mutation model ‘m.cl’. In addition, d = 3 is a

better choice for all three measures even though the effect is not significant. There are

not many significant interaction effects except for some interactions between C and

the mutation model (p=0.007) when the measure is sw. The interaction effect of C*m

is presented in the first plot of Figure 6.1 (Daly-A). This plot shows that among those

(9 choose 2 =36) pair-wise C*m level contrasts comparisons, the ones with mutation

model ‘m.cl’ are much better than the ones with the other two mutation models, and

the one with C=10 or C=15 are much better than the one with C5. The combination

of C15 and m.cl produces the best results.

The results obtained using hyperparameters (Table 6.1, columns H-s5, H-sL and H-

sw) also show that the factors C and m have significant effect. When the measure is sw

(the H-sw column), there is some evidence of interaction between C and d (p=0.022),

and between C and m (p=0.031). The relevant interaction effect plots are presented in

the second and the third plot of Figure 6.1 (Daly-B and Daly-C). Plot Daly-B shows

that m.cl is the best for all three C levels, but that C=15 produces the best results.

Plot Daly-C shows that d=3 produces better results with C=10 or 15. There are no

obvious large differences between C=10 and C=15, but the C=15 results are a bit

better.
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N-s5 p-values N-sL p-values N-sw p-values

C5 154.6 5 v10:<0.0001 217.1 5 v10:<0.0001 96.1 5 v10:<0.000

C10 134.6 5 v15:<0.0001 190.9 5 v15:<0.0001 86.8 5 v15:<0.0001

C15 136.1 (C10<C15) 187.8 (C15<C10) 84.9 (C15<C10)

d0 143.4 201.6 91.0 0.014

d3 140.1 (d3) 195.7 (d3) 87.5 (d3)

m.one 154.9 one v cl: <0.0001 206.9 one v cl: 0.0002 92.1 one v cl:<0.0001

m.l 152.9 l v cl:<0.0001 199.0 93.4 l v cl: <0.0001

m.cl 117.3 (m.cl) 189.0 (m.cl) 82.4 (m.cl)

label 152.9 <0.0001 193.5 0.0027 92.5 <0.0001

sw 130.5 (sw) 203.7 (label) 86.0 (sw)

Table 6.2: Summary of the Daly data results in Appendix C by calculating the cell means and

p-values of pairwise comparisons of different levels for each factor. Columns with names ‘N-s5’,

‘N-sL’ and ‘N-sw’ are the cell means for each main effect when not using hyperparameters,

these cell means are calculated for three measures (s5, sL and sw). Columns named ‘p-values’

are the pairwise comparison p-values for each main effect. Only the p-values that are less than

0.05 are presented in the table. Items listed inside ( ), for example, (m.cl), and (d), are the

levels of some factors that can produce better results. In particular, if there are two terms,

say, (C10 < C15), this means, C10 and C15 are significantly better than C5, but there are no

significant difference between C10 and C15 even though C10 seems to produce better results

(smaller error counts).



CHAPTER 6. RESULTS 76

H-s5 p-values H-sL p-values H-sw p-values

C5 168.0 5 v10:0.0008 209.8 5 v10: 0.0353 95.6 5 v10:0.005

C10 150.0 5 v15:0.0012 199.1 5 v15:<0.0001 88.9 5 v15:0.000

C15 151.4 (C10<C15) 189.6 (C15) 87.7 (C15<C10)

d0 154.2 200.5 91.0
d3 159.3 (d0) 198.5 (d3) 90.5 (d3)

m.one 162.2 one v cl:<0.0001 194.0 one v l:0.0009 91.6 one v cl:0.0057

m.l 168.0 l v cl:<0.0001 209.9 cl v l:0.0015 95.5 l v cl:<0.0001

m.cl 139.9 (m.cl) 194.6 (m) 85.0 (m.cl)

label 174.0 <0.0001 200.1 94.6 <0.0001

sw 139.5 (sw) 198.9 (sw) 86.9 (sw)

Table 6.3: Summary of the Daly Data results in Appendix C by calculating the cell means

and p-values of pairwise comparisons of different levels for each factor. Columns with names

‘H-s5’, ‘H-sL’ and ‘H-sw’ are the cell means for each main effect when using hyperparameters,

these cell means are calculated for three measures (s5, sL and sw). Columns named ‘p-values’

are the pairwise comparison p-values for each main effect. Only the p-values that are less than

0.05 are presented in the table. Items listed inside ( ), for example, (m.cl), and (d), are the

levels of some factors that can produce better results. In particular, if there are two terms,

say, (C10 < C15), this means, C10 and C15 are significantly better than C5, but there are no

significant difference between C10 and C15 even though C10 seems to produce better results

(smaller error counts).
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Figure 6.1: The interaction plots for the Daly data, showing mean switch distance scores for

significant interaction effects in Table 6.1. The title of the first plot is “Daly-A: non hyper-C*m

(p=0.007)”, this means that this plot is the interaction plot of C*m for the Daly data when

not using hyperparameters, the p-value for the this interaction effect is 0.007 as listed in the

6th row and the 4th column of Table 6.1. Plot Daly-B and Daly-C have the similar meaning.
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Factors N-s5 N-sL N-sw H-s5 H-sL H-sw

C 0.014 0.006 <0.0001 0.001

d 0.006 0.0003 0.0001

m <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

C*d <0.0001 0.047 0.001

C*m 0.018 0.004 0.045 0.003

m*d 0.018

Single <0.0001

Table 6.4: Small p-values (less than or equal to 0.05) from the ANOVA of model (∗) for

the CEU data. Columns with names ‘N-s5’, ‘N-sL’ and ‘N-sw’ are p-values obtained from

the ANOVA done for the results without using hyperparameters; columns with names ‘H-s5’,

‘H-sL’ and ‘H-sw’ are p-values obtained from the ANOVA done for the results from model

using hyperparameters.

The CEU data. When not using hyperparameters (Table 6.4, columns N-s5,

N-sL and N-sw), the factor that matters most for all three measures is the mutation

model. Similar to the Daly data, it is the m.cl model that produces the best results.

There is an interaction effect between C and m when the measure is sL (p=0.018);

in particular, the combination of C5 and m.one did not produce good results. When

the mutation model is m.cl, there is no obvious difference between the results of C=5,

10 and 15. Overall, because the error count of this CEU data is very small, and

the sample size is very small (only 30 individuals), this interaction effect may not be

very important and no interaction plot is presented. The C factor only matters for

the sL measure (p=0.014), with C=10 and C=15 producing better results than C=5

as shown in Table 6.5. There is no significant difference between C=10 and C=15.

Overall, Table 6.5 suggests that the combination of C=10 and m.cl produces the best
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results.

When using hyperparameters, Table 6.4 (columns H-s5, H-sL and H-sw) shows

that all three factors have significant effects, and that there are significant interactions

between them. Since the interaction patterns of three measures (s5, sL, sw) are very

similar, only the interaction plot of the sw measure is presented in Figure 6.2. These

plots show that the m.cl model is significantly better, and that d=3 is better with

m.cl. Table 6.6 and Figure 6.2 show that the combination of C=10, m.cl model and

d=3 produces the best results.
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N-s5 p-values N-sL p-values N-sw p-values

C5 6.9 3.1 5 v10: 0.013 3.3
C10 6.0 2.0 3.1
C15 6.4 (C10) 2.3 (C10) 3.2 (C10)

d0 6.3 2.5 3.2
d3 6.5 2.5 3.2

m.one 5.2 all <0.0001 2.6 one v cl: 0.0023 2.3 all <0.0001
m.l 13.8 3.7 one v l : 0.011 6.0 (m.cl)
m.cl 0.3 (m.cl) 1.2 l v cl: <0.0001 1.1

(m.cl)

label 6.6 <0.0001 2.6 3.3 <0.0001
sw 6.3 (sw) 2.4 (sw) 3.1 (sw)

Table 6.5: Summary of the CEU data results in Appendix C by calculating the cell means and

p-values of pairwise comparisons of different levels for each factor. Columns with names ‘N-s5’,

‘N-sL’ and ‘N-sw’ are the cell means for each main effect when not using hyperparameters,

these cell means are calculated for three measures (s5, sL and sw). Columns named ‘p-values’

are the pairwise comparison p-values for each main effect. Only the p-values that are less than

0.05 are presented in the table. Items listed inside ( ), for example, (m.cl), and (d), are the

levels of some factors that can produce better results. In particular, if there are two terms,

say, (C10 < C15), this means, C10 and C15 are significantly better than C5, but there are no

significant difference between C10 and C15 even though C10 seems to produce better results

(smaller error counts).
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H-s5 p-values H-sL p-values H-sw p-values

C5 12.8 5 v 10: 0.017 3.5 5 v 10:<0.0001 5.1 5 v 10:0.0018
C10 9.9 5 v 15: 0.013 2.1 5 v 15: 0.0048 3.8 5 v 15:0.0091
C15 9.8 (C10>C15) 2.5 (C10<C15) 3.9 (C10<C15)

d0 12.0 0.0061 3.2 0.0003 4.9 0.0001
d3 9.7 (d3) 2.2 (d3) 3.6 (d3)

m.one 11.6 all <0.0001 2.9 one v cl:<0.0001 4.5 all <0.0001
m.l 16.1 3.7 l v cl :<0.0001 6.3
m.cl 4.9 1.6 l v one: 0.029 2.0

(m.cl) (m.cl) (m.cl)

label 13.3 <0.0001 3.0 4.5 <0.0001
sw 8.4 (sw) 2.5 (sw) 4.0 (sw)

Table 6.6: Summary of the CEU Data results in Appendix C by calculating the cell means

and p-values of pairwise comparisons of different levels for each factor. Columns with names

‘H-s5’, ‘H-sL’ and ‘H-sw’ are the cell means for each main effect when using hyperparameters,

these cell means are calculated for three measures (s5, sL and sw). Columns named ‘p-values’

are the pairwise comparison p-values for each main effect. Only the p-values that are less than

0.05 are presented in the table. Items listed inside ( ), for example, (m.cl), and (d), are the

levels of some factors that can produce better results. In particular, if there are two terms,

say, (C10 < C15), this means, C10 and C15 are significantly better than C5, but there are no

significant difference between C10 and C15 even though C10 seems to produce better results

(smaller error counts).
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Figure 6.2: The interaction plots for the CEU data, showing mean switch distance scores for

significant interaction effects in Table 6.4. The title of the first plot is “CEU-A: use hyper-C*m

(p=0.001)”, this means that this plot is the interaction plot of C*m for the CEU data when

using hyperparameters, the p-value for the this interaction effect is 0.001 as listed in the 5th

row and the 7th column of Table 6.4. Plot CEU-B and CEU-C have the similar meaning.
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The YRI data. When not using the hyperparameters (Table 6.7, columns N-s5,

N-sL and N-sw), C and m are significant main effects. Table 6.8 shows that C=10

or C=15 produces better results, and that the m.one model produces best results.

Table 6.7 shows that there are three significant interaction effects. Two are for the sL

measure, one is between C and m (p=0.0178), another is between m and d (p=0.0021).

The third one is for the sw measure with the p value 0.035 between C and m. The

interaction plot YRI-A (the first plot in Figure 6.3) shows that for all three C levels,

the worst mutation model is m.cl. The m.l model is good for C=5 and 10, but when

C=15, m.one model is better. Plot YRI-A shows that the best combination is C10

and the model ‘m.l’. Plot YRI-B in Figure 6.3 is the interaction plot for m and d, it

shows that the best combination is m.l and d=3. Considering both YRI-A and YRI-B

plot, the best combination for the sL measure is C = 10, d = 3, and the m.l model.

For the sw measure, there are some interaction effects (p=0.035), plot YRI-C shows

Factors N-s5 N-sL N-sw H-s5 H-sL H-sw

C <0.0001 0.0117 0.011 0.001 0.0049 0.0007

d 0.017 0.031

m <0.0001 0.0003 <0.0001

C*d

C*m 0.0178 0.035 0.024 0.016

m*d 0.0021

Single <0.0001 <0.009 <0.0001 <0.0001

Table 6.7: Small p-values (less than or equal to 0.05) from the ANOVA of model (∗) for

the YRI data. Columns with names ‘N-s5’, ‘N-sL’ and ‘N-sw’ are p-values obtained from the

ANOVA done for the results without using hyperparameters; columns with names ‘H-s5’, ‘H-

sL’ and ‘H-sw’ are p-values obtained from the ANOVA done for the results from model using

hyperparameters.



CHAPTER 6. RESULTS 84

N-s5 p-values N-sL p-values N-sw p-values

C5 79.2 5 v10:<0.0001 107.1 5 v10:0.008 46.8 5 v10:0.0486

C10 67.2 5 v15: 0.008 96.3 44.3 5 v 15: 0.014
C15 70.2 (C10<C15) 101.7 (C10) 43.8 (C15<C10)

d0 72.9 103.5 46.0
d3 71.4 (d3) 99.9 (d3) 43.9 (d3)

m.one 58.0 one v cl:< 0.0001 99.1 one v cl:0.0063 41.1 one v cl:< 0.0001

m.l 78.4 one v l:< 0.0001 95.9 l v cl:0.0003 46.8 one v l:< 0.0001

m.cl 80.2 (m.one) 110.3 (m.l<m.one) 47.0 (m.one)

label 77.6 <0.0001 100.4 46.1 0.009

sw 66.8 (sw) 103.1 (label) 43.8 (sw)

Table 6.8: Summary of the YRI data results in Appendix C by calculating the cell means and

p-values of pairwise comparisons of different levels for each factor. Columns with names ‘N-s5’,

‘N-sL’ and ‘N-sw’ are the cell means for each main effect when not using hyperparameters,

these cell means are calculated for three measures (s5, sL and sw). Columns named ‘p-values’

are the pairwise comparison p-values for each main effect. Only the p-values that are less than

0.05 are presented in the table. Items listed inside ( ), for example, (m.cl), and (d), are the

levels of some factors that can produce better results. In particular, if there are two terms,

say, (C10 < C15), this means, C10 and C15 are significantly better than C5, but there are no

significant difference between C10 and C15 even though C10 seems to produce better results

(smaller error counts).

that m.one is better than the other two models for C=10 and C=15. Overall, when

not using hyperparameters, the best combination for all measures is C=10 (or C=15),

d=3 and m.one.

When using hyperparameters (Table 6.7, columns H-s5, H-sL and H-sw), C has a

significant main effect. There are significant interaction effects between C and m, one

is for the s5 measure, (p=0.024), another is for the sw measure (p=0.016). Plot YRI-D

(the interaction plot of C*m for s5 measure in Figure 6.3) shows that this interaction
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Figure 6.3: The interaction plots for the YRI data, showing mean switch distance scores for

significant interaction effects in Table 6.7. The title of the first plot is “YRI-A: Non-hyper-C*m

(p=0.0178)”, this means that this plot is the interaction plot of C*m for the YRI data when

using hyperparameters, the p-value for the this interaction effect is 0.001 as listed in the 6th

row and the 3rd column of Table 6.7. Plot YRI-B, YRI-C, YRI-D, YRI-E have the similar

meaning.
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H-s5 p-values H-sL p-values H-sw p-values

C5 82.0 5 v 10: 0.002 115.3 5 v10: 0.01 48.2 5 v 10: 0.001
C10 73.3 5 v 15: 0.005 102.3 5 v15: 0.016 44.8 5 v 15: 0.0095
C15 74.0 (C10<C15) 103.0 (C10<C15) 45.5 (C10<C15)

d0 75.4 103.0 0.031 45.7
d3 77.5 (d0) 110.8 (d0) 46.6 (d0)

m.one 74.5 102.4 46.0
m.l 78.5 111.3 46.2
m.cl 76.3 (m.one) 107.0 (m.one) 46.3 (m.one)

label 85.3 <0.0001 108.7 48.3 <0.0001
sw 67.6 (sw) 105.1 (sw) 44.0 (sw)

Table 6.9: Summary of the YRI Data results in Appendix C by calculating the cell means

and p-values of pairwise comparisons of different levels for each factor. Columns with names

‘H-s5’, ‘H-sL’ and ‘H-sw’ are the cell means for each main effect when using hyperparameters,

these cell means are calculated for three measures (s5, sL and sw). Columns named ‘p-values’

are the pairwise comparison p-values for each main effect. Only the p-values that are less than

0.05 are presented in the table. Items listed inside ( ), for example, (m.cl), and (d), are the

levels of some factors that can produce better results. In particular, if there are two terms,

say, (C10 < C15), this means, C10 and C15 are significantly better than C5, but there are no

significant difference between C10 and C15 even though C10 seems to produce better results

(smaller error counts).

is mainly due to the bad performance of C5, when the mutation model is m.l. C10 and

C15 are significantly better than C5 for all three mutation models, but there is not

much difference between the performance of C10 and C15. Plot YRI-E (the interaction

plot between C and m for sw measure in Figure 6.3) shows that C10 and C1 are better

than C=5, since there are some interactions between C10/C15 and m.l/m.one. The

best parameter choice is the combination of C=10 and m.one. Overall, Tables 6.7, 6.9

and Figure 6.3 show that C=10, m.one and d = 0 is the best combination.
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In the last row of Tables 6.1, 6.4 and 6.7, the p-values for ‘single’ factor is often

very small for the Daly and YRI data. This shows that how the best haplotypes

are obtained has a significant effect on measures of performance. For the s5 and sw

measures, the minimizing switch distance method produce better results, for the sL

measure, sometimes, the label method is better.

The results of not using the hyperparameters is, in general, better than the ones

using hyperparameters. This can be seen by comparing the cell means in Tables 6.2

and 6.3, 6.5 and 6.6, 6.8 and 6.9. When “hyperparameter” is treated as one main

effect factor in a larger model

measure = C + d + m + hyper + single + C ∗ d + C ∗ m + d ∗ m + hyper ∗ C +

hyper ∗ C + hyper ∗ d + ε,

the ANOVA from the above model shows that the hyperparameter factor sometimes

has a significant effect and it also shows there are some interactions between the hyper

factor and other factors such as C and mutation model (results not shown). Therefore,

the analysis for all three data sets was done separately by hyperparameter status.

6.2.3 Comparing the best single estimates with PHASE and fast-

PHASE

PHASE v2.1.1 (Stephens and Scheet 2005) is currently considered to be the best

population haplotype inference method, as noted in Marchini et al. (2006). In addition,

among the three HMM based haplotype inference methods compared in chapter 5,

fastPHASE seems to be the best. Therefore, in this thesis, these two programs are
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compared with the performance of my HMM method. Table 6.10 displays five runs

of PHASE results for the Daly, YRI and CEU data. For the CEU data, all of five

PHASE runs produce results with 0 error counts for all measures (mis.G, mis.M, s=5,

s=L and sw), hence, only one row is shown in Table 6.10.

Table 6.11 shows the fastPHASE results for Daly, YRI and CEU data. I present

results using both methods of summarizing the best single estimate (minimizing indi-

vidual error and minimizing switch distance error), as described in Scheet and Stephens

(2006). For both Tables 6.10 and 6.11, the sw.prob column lists the switch propor-

tions which can be obtained from the sw columns by dividing the total number of

heterozygous markers that are needed to switch.

For the Daly data, I use the combination of C=10, d=3, and the m.cl mutation

Daly Seeds mis.G mis.M s=5 s=L sw sw.pro
seed 1 0 11 133 210 79 0.03044
seed 2 0 12 165 210 76 0.02929
seed 3 0 13 142 218 79 0.03044
seed 4 0 13 142 181 79 0.03044
seed 5 0 12 161 192 98 0.03776

YRI seed 1 0 1 65 61 41 0.05318
seed 2 0 2 75 61 37 0.04799
seed 3 0 1 53 62 39 0.05058
seed 4 0 1 58 59 38 0.04929
seed 5 0 1 67 63 42 0.05447

CEU seeds 1-5 0 0 0 0 0 0

Table 6.10: PHASE results of three data sets. All parameters are set to be the default values

except that the numbers of burn in and main iterations are increased to be both 500 (default is

100), and the thinning interval is increased to 3 (the default is 1). Note, the default modeling

setting in PHASE v2.1.1 is that the “coalescent-with-recombination” prior is used.
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Daly single mis.G mis.M s=5 s=L sw sw.pro

T50K10 indiv: 0 11 99 153 67 0.02582
min.sw: 0 11 96 196 71 0.02736

T50CV15 indiv: 0 12 109 186 77 0.02967
min.sw: 0 12 105 181 74 0.02852

YRI single mis.G mis.M s=5 s=L sw sw.pro

T50K10 indiv: 0 1 87 92 46 0.05966
min.sw: 0 1 58 66 36 0.04669

T50CV10 indiv: 0 1 43 76 34 0.0441
min.sw: 0 1 61 67 41 0.05318

CEU single mis.G mis.M s=5 s=L sw sw.pro

T50K10 indiv: 0 0 5 1 2 0.00417
min.sw: 0 0 5 1 2 0.00417

T50CV15 indiv: 0 0 5 1 2 0.00417
min.sw: 0 0 5 1 2 0.00417

Table 6.11: The fastPHASE results for three data sets. T50K10 means that fastPHASE

was run with 50 different starting values in order to avoid the local mode problem of the EM

algorithm, and the number of ancestral haplotypes was fixed at 10. In the fourth row and first

column of each table, T50CV10 (or T50CV15) means running fastPHASE with 50 different

starting values and letting the program do cross validation to pick the best number of ancestral

haplotypes and ‘CV10’ or ‘CV15’ means that the best number of ancestral haplotypes selected

by fastPHASE is 10 or 15. The parameters of fastPHASE were set to their default values.

Rows labeled (from the second column) with “indiv” show results with the best single estimate

obtained by minimizing the individual error (Scheet and Stephens, 2006). Rows labeled with

“min.sw” (from the second column) show results with the best single estimate obtained by

minimizing the switch distance.
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Daly s=5 range s=L range sw range

PHASE : 133-161 181-218 76- 98

fastPHASE: 96 -109 153-196 67-77

my HMM: 101-128 176-198 76-92

YRI s=5 range s=L range sw range

PHASE : 53-75 59-63 37-42

fastPHASE : 43-87 66-92 36-46

my HMM: 43-82 93-124 33-45

CEU s=5 range s=L range sw range

PHASE : 0 0 0

fastPHASE : 5 1 2

my HMM: 0 0-2 1-2

Table 6.12: Comparison of three methods using three data sets. The PHASE results of three

data sets are the summary of Table 6.10. The fastPHASE results are the summary of Table

6.11. For my HMM results, the parameter combinations as follows, the Daly data: C=10, d=3

and the m.cl model; the YRI data: C=10, d=3 and m.one model; the CEU data: C=10, d=3

and the m.cl model.

model (without using hyperparameters) for my HMM method to compare with PHASE

and fastPHASE. The range of performance scores for each method (for all three mea-

sures, s5, sL, sw) is shown in the first 4 rows of Table 6.12. This summary table shows

that fastPHASE is better than my HMM and my HMM is slightly better than PHASE.

For YRI data, I use the combination of C=10, d=3, and m.one for my HMM

method (without using the hyperparameters). The comparison range is summarized

in the 5th to 8th row of Table 6.12. This summary shows that PHASE is only better

than the other two programs for the s=L measure. For the s=5 and sw measure, my

HMM is slightly better than fastPHASE.

For the CEU data, the summary is in the the last 4 rows of Table 6.12. The
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combination of C=10, d=3 and the m.cl mutation model is used for my HMM method

(without using hyperparameters). PHASE produces the best results, but my HMM is

slightly better than fastPHASE for the s=5 measure.

For the mis.M column in the result tables, PHASE and fastPHASE have smaller

values than the HMM method on average. For example, the mis.M count for these

two methods are about 11 or 12, while in my HMM method, it is 12 to 15. For the

mis.G column, these two methods have “0” error which is due to their assumption of

no genotyping error.

In conclusion, all of these three methods produce fairly comparable results, but

occasionally, one method seems a bit better or worse. However, differences could be

due to the variation among different runs, to the variation caused by the missing

genotypes, for example, there are about 10% missing genotype in the Daly data; or to

the small sample size, for example, there are only 30 individuals in the YRI data and

CEU data.

6.2.4 Comparing the posterior samples with PHASE

In this subsection, two figures, for the Daly and YRI data, have been used to compare

the HMM results with the PHASE results based on the distributions of the posterior

samples. Note that the results of my HMM methods and PHASE are so close for

the CEU data, I did not graph their posteriors. This comparison still uses MERLIN

inference as the standard. For the Daly and YRI data, there is one plot for each data

set to compare the posterior sample person by person. Loci are ignored when no true
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Figure 6.4: Comparison of the posterior probabilities of the correct haplotype as produced

by the PHASE program and the HMM method for the Daly data (with 103 markers), person

by person. For the HMM method, C=10, d=3, mutation model is “m.cl” and the above

probabilities are based on every 4th iteration of last 300 out of a total of 600 iterations. For

the PHASE program, the probabilities are based on every 4th of last 500 out of 1000 iterations.
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parental haplotype origin can be inferred because of missing data, or because both

parents and child have same heterozygous genotypes. These plots are made as follows:

(1) For both the PHASE and the HMM method, take R posterior samples for

the haplotypes of each person, summarize all possible haplotype combinations, and

calculate the probability of each haplotype combination. (PHASE has provided this

in its output files).

(2) For one person, compare all haplotype combinations with MERLIN, and add

up the probabilities of the haplotype combinations that are consistent with MERLIN’s

inference.

(3) Repeat (1) and (2) for all P people to get a vector of probabilities with length

P , and plot this vector.

For the Daly data, the posterior plot (Figure 6.4) shows that the PHASE posterior

samples generate more “0” probabilities (which is bad) than the HMM method, and

it has more “1” probabilities (which is good) as well. Specifically, PHASE has 33 (out

of 129) “0” probabilities, the HMM method has only 17 (out of 129) “0” probabilities;

PHASE has 36 (out of 129) “1” probabilities, the HMM method has only 4 (out of

129) “1” probabilities. The HMM methods have more probabilities that are between

0 and 1 than the PHASE program.

For the YRI data, the posterior plot (Figure 6.5) shows that PHASE posterior

samplers also have more “0” and “1” probabilities as well. Specifically, PHASE has 7

“0”s and the HMM has 2 “0”s; PHASE has 2 “1”s and the HMM has 0 “1” s. There

are more ‘points’ above the straight line in the third plot, which shows that PHASE
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Figure 6.5: Comparison of the probabilities of the correct haplotype as produced by the

PHASE program and the HMM method for the YRI data (with 91 markers), person by person.

For the HMM method, C=10, d=3, mutation model is “m.one” and the above probabilities

are based on every 4th iteration of last 300 out of a total of 600 iterations. For the PHASE

program, the probabilities are based on every 4th of last 500 out of 1000 iterations.
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Sampled A Sampled Q1

ch1 C G T T T A G 0.49

ch2 T A A T T G G 0.02

ch3 T G T T T G A 0.30

ch4 T G A T T A G 0.08

ch5 C G T T G A G 0.05

ch6 C G T C T A G 0.07

Table 6.13: Sampled ancestral haplotypes (A) for haplotype block 8 of the Daly data (see

Appendix A) and sampled Q1 from iteration 90 in a run with C = 6 and d = 0.

is more certain in its haplotype assignment than the HMM method for this particular

YRI data.

6.3 Ancestral haplotypes

The idea of ancestral haplotypes can be very helpful when constructing haplotypes

near disease-causing mutations. Specifically, these ancestral haplotypes may be con-

sidered as the putative progenitor haplotypes (Neuhausen et al. 1996, Niell et al. 2003)

of the most recent common ancestors (MRCA). On those progenitor haplotypes, all

individuals may carry the same mutation. The estimated ancestral haplotypes from

the HMM are not guaranteed to resemble the true ancestral haplotypes from which the

population was derived, but it is still likely that more common haplotypes are older

than rare haplotypes.

In order to show a simple picture of the HMM estimated ancestral haplotypes, a

run of the HMM method is done only on the genotypes of haplotype block 8 of the

Daly data (Daly et al. 2001), with the parameter choices that C=6, d=0, mutation

model is m.one, and without using hyperparameters. The sampled A for this block



CHAPTER 6. RESULTS 96

and the occurrence frequencies of different ancestral haplotypes at the first locus, Q1,

is given in Table 6.13. For short sequences in strong LD, Q1 shows how frequently

each ancestral haplotype is used. The first four haplotypes in A are the same as the

four common haplotypes reported in the ‘A row’ of Figure 2, Daly et al. (2001). The

last two haplotypes each differ from ch1 at only one marker. The values of Q1 for

the first four ancestral haplotypes are 0.49, 0.02, 0.30, and 0.08, and the sum of these

values is 0.89, which is very close to 0.91, the value reported in Daly et al. (2001) as

the combined frequencies of their four common haplotypes.

In order to get a more detailed picture of the frequency of usage for ancestral

haplotypes, a plot of the sampled S for all 103 loci in the Daly data is given in Figure

6.6. Each of these 10 lines represents one ancestral haplotype. The space between the

ith and (i − 1)th line, for i = 1, · · · , 9, is the frequency of the ith ancestral haplotype

Two common haplotypes in sampled A for the Daly data (103 markers)

Red haplotype :
GGACAACC (G) TTACG (C) CGGAGACGA
CGCGCCCGGAT CCAGC CCGAT
CCCTGCTTACGGTGCAGTGGCACGTATTGCA (C)
CGTTTAG (C) ACAACA GTTCTGA TATAG

Green haplotype:
AATTCGTG (G) CCCAA (C) CGCAGACGA
CTGCTATAACC GCGCT CTGAC
TCCCATCCATCATGGTCGAATGCGTACATTA (C)
TGTTTGA (G) GCGGTG TGTGCGG CGGCG

Table 6.14: Alleles grouped together are in the same haplotype block. Alleles in parentheses

are between two consecutive blocks. Alleles (TGTGCGG) that are underlined mean that they

are the same as the blue haplotype in block 8 of ‘row A’ , Figure 2, Daly et al. (2001). (Note,

this figure is listed in Appendix A)
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in S. It can be seen that, these 10 lines are relatively stable between block boundaries.

However, there are some sharp curves or jumps near the block boundaries, showing

that the individuals appear to have recombined chromosomes.

Two haplotypes, named ‘Red haplotype’ and ‘Green haplotype’ in Table 6.14, are

most frequently sampled, as seen in Figure 6.6. Their frequencies in S correspond to

the space between the 8th and 9th line in the plot, and the space between the 9th and

10th line in the plot, respectively. From Figure 6.6, we can see that at almost all loci,

those two ancestral haplotypes are used more than 50% of the time in the sampled

S. In fact, Red haplotype and Green.hap are exactly the same as the red and green

haplotypes in the “A row” of Figure 2, Daly et al. 2001, except for a swap between

green and blue haplotypes at block 10 in the analysis of Daly et al. (2001). Between

block 9 and 10 the haplotype exchange rate has the high of 27%, as mentioned in ‘D

row’ of Figure 2 in Daly et al. (2001), and hence a swap in the HMM is not unlikely.

Note that the figure in the Appendix A (Figure 2 in Daly et al. (2001)) is attached as

a black and white figure, so it is worth pointing out that the ‘Red haplotype’ and the

‘Green haplotype’ in this section corresponds to the first and the third haplotype in

the A row of this attached figure. The “Blue haplotype” corresponding to the second

haplotype in the A row this appendix figure.

In addition to plotting the sampled S of the Daly data, the plots of sampled S’s

for the CEU and YRI data are shown in Figure 6.7 and 6.8, respectively. For the

CEU data, there is no obvious recombination. Three ancestral haplotypes are more

commonly used than others. For the YRI data, Figure 6.8 shows an obvious pattern
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Figure 6.6: Proportion of S that uses each ancestral haplotype (A), in an analysis of all

103 loci in the Daly data. Samples are drawn at iteration 600 from a run with C=10, d=3,

mutation model m.cl and without using hyperparameters. The vertical long dashed line is the

first marker of each haplotype block, the vertical dotted line is the last marker of each block,

and 1 to 11 indicate the haplotype block numbers. Red haplotype and Green haplotype are

the two haplotypes that most commonly used among all individuals, the length between the

line below and above them is the frequencies that they are used.
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Figure 6.7: Proportion of S that uses each ancestral haplotype (A), in an analysis of all 56 loci

in the CEU data. Samples are drawn at iteration 600 from a run with C=10, d=3, mutation

model m.cl and without using hyperparameters.

of recombination. Three ancestral haplotypes are used most frequently between the

20th and the 60th marker, but no single ancestral haplotype is used very frequently at

all loci.
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Figure 6.8: Proportion of S that uses each ancestral haplotype (A), in an analysis of 91 loci in

the YRI data. Samples are drawn at iteration 600 from a run with C=10, d=3, the mutation

model m.one and without using hyperparameters. Vertical long-dashed line, solid line and

dotted line are the beginning, center and end of each of those two recombination hotspots

mentioned in section 6.1.
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6.4 Recombination and mutation models

6.4.1 The mutation models

As shown in the previous ANOVA results, the mutation model used plays a significant

role. Comparisons of the three mutation models allow us to observe some interesting

patterns in the three data sets.

First, for the CEU data, the result table (Table A3 of Appendix C) shows that

when using the mutation model that has one mutation rate for each locus (i.e. ‘m.l’

model), the performance of the HMM method is obviously worse than the others. After

investigating the error count and the posterior mutation estimates, I learned that at

a specific locus (l = 47), the posterior estimate of the mutation rate is higher than

the other loci. Since this mutation rate is higher, more inconsistencies between (A, S)

and H are allowed at locus 47. On the other hand, the genotyping error is very small,

and the recombination rate is relatively low (Tl is very large) for this CEU data. As

a result, more heterozygous genotypes are placed in the wrong order in the estimated

haplotypes. When the m.cl model is used, the apparent high mutation rate at l = 47

only applies to a few ancestral haplotypes and hence the estimates of the mutation

rate have much less effect on the overall error.

Second, another interesting pattern occurs in the results of the YRI data. Contrary

to the other two data sets (Daly and CEU), for which the ‘m.cl’ mutation model

performs best, the YRI data show that the best results are obtained when the mutation

model is m.one (one mutation variable for all loci). In my opinion this is because the
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recombination pattern is irregular and this data set contains a lot more recombinations

than the other two data sets. This can be seen in the recombination plots of the YRI

data Figure 6.8, recombinations occur at several loci. Therefore, for this YRI data

set, recombination should play more of a role in the whole ‘inheritance’ process. If the

mutation model ‘m.cl’ (or ‘m.l’) is used, more variation is added to the whole model

through additional parameters, and the estimated variance of the mutation rate are

higher. On the other hand, when using just one mutation variable for all loci, the

mutation estimate is forced to become very small by the overall rarity of mutations.

This allows the recombination parameters to play more of a role as it is expected,

which in turn produces better results. That is, when the mutation rate is reasonably

small, the small mutation rate forces the ancestral chromosomes to recombine more

frequently to reduce the inconsistencies between (A, S) and H; this can then help

produce better results.

6.4.2 The recombination parameter

Another important parameter of the HMM method is the recombination parameter, T .

Plots of the sampled T for both the Daly data (Figure 6.9) and the YRI data (Figure

6.10) show that this parameter is helpful in estimating the location of recombination

hotspots.

In the plot of the Daly data (Figure 6.9), the probability of staying with the same

ancestral chromosome is lower at the block boundaries of Daly et al. (2001). In

addition, there are about 4 large “dips” in the HMM recombination parameter plot
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between blocks 2 and 3, 3 and 4, 9 and 10, and 10 and 11, where all sampled T’s

are less than 90%. These dips are qualitatively quite consistent with the ‘D row’ of

Figure 2 of Daly et al. (2001) (see Appendix A), which shows the estimated haplotype

exchange rate between blocks. Hence, our recombination parameter T can identify the

regions where recombination occurs in the Daly data, and produce estimate similar in

magnitude.

The 91 markers in the YRI data were deliberately selected from a region containing

recombination hotspots on chromosome region 19q13. As mentioned in section 6.1, this

region spanned from 37128001bp to 37272001bp, includes two identified recombination

hotspots, one is from 37128001bp to 37137001bp, with hotspot center at 37134001bp,

and another from 37262001bp to 37272001bp, with hotspot center at 37264001bp.

Figure 6.7 shows that at those two regions, the sampled T ’s of the HMM method

have a ‘dip’ at or close to each hotspot center. Once again this implies our sampled

T is useful for predicting the recombination hotspots in this data set. Furthermore,

although the HAPMAP web resource did not mention other recombination hotspots in

this region, the sampled T’s suggest that there may be other additional recombination

hotspots between these known hotspots.

The CEU data was not deliberately selected from a recombination hotspot region,

and the recombination plot in Figure 6.11 shows that there is no obvious recombination

pattern.

One interesting and important question is how the estimated amount of recombi-

nation changes when the other aspects of the model change, for example, the number
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of ancestral chromosome (C), or the mutation models. In order to answer this, I plot-

ted the 600th sampled T (the last iteration) for three different numbers of ancestral

chromosomes (C=5, 10, and 15) with mutation model fixed as ‘m.cl’ and d=3. I also

plotted the 600th sampled T for the three mutation models (with C=10, d=3 fixed).

These plots were done for both models without using hyperparameters and models

using hyperparameter, for all three data sets (Daly, CEU, YRI), and are shown in

Figures 6.12, 6.13 and 6.14. These three plots show that the overall main pattern of

recombination is not affected much when C changes, or when different mutation mod-

els are used. This is true for both models with and without using hyperparameters.

However, there are two noticeable differences. First, when not using hyperparameters,

at low-recombination areas, there is still some variation among the sampled T, but

when using hyperparameters, the sampled T is pushed to be strictly close to 1. Sec-

ond, when using hyperparameters, the estimated Tl becomes smaller in regions with

more recombination (small Tl values) in the Daly and YRI data,

In conclusion, the recombination parameters of the Hidden Markov Model can help

predict recombination hotspots. The overall pattern of recombination does not change

much when the number of ancestral chromosomes, or the mutation model changes.

After running the program on a specific data set for a few times, plotting several

sampled T against the physical distance or the marker number may reveal a pattern

of recombination. If most or all sampled Tl’s between any two consecutive loci l and

l + 1 have values less than 0.85, this could be evidence of a recombination hotspot.
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Figure 6.9: Samples of Tl, l = 1, · · · , 103, from the posterior distribution for the Daly data.

Samples are drawn at iteration 400 (dotted line), 500 (longdash line) and 600 (solid line) from

a model with the combination of C = 10, d = 3 and the mutation model ‘m.cl’. Vertical dashed

and dotted lines represent each block’s start and end, respectively, for all the 11 haplotype

blocks defined in Daly et al. (2001). The number (1 - 11) in the bottom indicates those 11

haplotype blocks.
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Figure 6.10: Samples of Tl, l = 1, · · · , 91, for the YRI data on ch19q13. Markers are plotted by

their physical location. Vertical long-dashed line, solid line and dotted line are the beginning,

center and end of each recombination hotspot. Samples are taken from a run at iteration 400

(dotted line), 500 (longdash line) and 600 (solid line) with parameter choice C = 10 and d = 3.

In addition, the mutation model is one mutation variable for all loci.
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Figure 6.11: Samples of Tl, l = 1, · · · , 56, for the CEU data on 7p15.2. Samples are taken

from a run with C = 10 and d = 3 at iteration 400, 500 and 600. The mutation model is ‘m.cl’.
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Figure 6.12: Samples of Tl (l = 1, · · · , 102), for different C values (C=5, 10 and 15), different

mutation models (m.one, m.l and m.cl) and different hyperparameter choices (using or not

using hyperparameters for T and m).
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Figure 6.13: Samples of Tl (l = 1, · · · , 55), for different C values (C=5, 10 and 15), different

mutation models (m.one, m.l and m.cl) and different hyperparameter choices (using or not

using hyperparameters for T and m).
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Figure 6.14: Samples of Tl (l = 1, · · · , 90), for different C values (C=5, 10 and 15), different

mutation models (m.one, m.l and m.cl) and different hyperparameter choices (using or not

using hyperparameters for T and m).



Chapter 7

Discussion

In this thesis, a new Bayesian method was developed to do haplotype inference. This

method is based on the assumption that present haplotypes are all inherited from an-

cestral haplotypes of many generations ago. Recombination and mutation processes,

the two main sources of genetic variation, are included in this model. The recombina-

tions between different ancestral haplotypes lead to a hidden Markov chain. Therefore,

this haplotype inference method is based on a Hidden Markov Model. Markov Chain

Monte Carlo methods were used to sample from the posterior distribution.

7.1 About using a Bayesian method

Generally speaking, there are three advantages of using a Bayesian method. First, an

informative prior about a parameter can help improve the performance of the model,

because inference will be based on not only the data, but also on the prior knowledge.

In contrast, a non-Bayesian method would infer based only on the data itself. Second,
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it is much easier to examine the uncertainty of the estimate through the posterior

distribution. Instead of only producing a best single estimate (a point estimate), the

distribution of different haplotype combinations is also obtained. Third, it is relatively

easy to incorporate other known information such as partially known haplotypes, as

was done in Stephens et al. (2001).

Bayesian methods also have some drawbacks. First, if the the prior does not reflect

the truth very well, then the result can be biased. Second, MCMC methods can be

very slow to achieve convergence and sample from the posterior. For example, for

fastPHASE (a non-Bayesian method) which is implemented using the EM algorithm,

the computation time for the Daly data is about half an hour to get the presented

results (with T=50 different starting values). The PHASE program is a Bayesian

method using MCMC. Its running time is about 1.5 minutes per iteration, and takes

about one day (25 hours) to get the results presented (1000 iterations in total). For the

HMM method presented in this thesis, with C=10, it takes approximately 3 minutes

to do one iteration for the Daly data, and the total amount of time to get posterior

samples over 600 iterations is approximately one day (30 hours). As for the number of

iterations for PHASE and the HMM method needed to get the current results, I first

ran 600 iterations for the PHASE program, and found that the results varied a bit, and

for the HMM method, results similar to those presented can be obtained in a run of

200 iterations. Here more iterations are run in order to make sure the Markov chains of

both methods converged well. Note that the program in this thesis is implemented in

R. If it were converted to C, its speed might improve from about 10 to 100 times. Both
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PHASE and fastPHASE are implemented in C. The above computing time comparison

is based on using the same computer for the three programs.

7.2 About the genotyping error model

Genotyping error is a very important factor in genetic studies. However, to my knowl-

edge, genotyping error has not been considered in current haplotype inference methods,

with the exception of Xing et al. (2004). One feature of my HMM-based model is the

incorporation of a genotyping error parameter. A consequence of this feature is that

observed genotypes are not required to match the sampled values of haplotypes (H).

As shown in the result tables (Appendix C), my HMM-based method reports some

potential genotyping errors. In contrast, PHASE and fastPHASE report no genotyp-

ing errors (i.e. ‘0’ in their mis.G count), since these methods assume no genotyping

errors.

Another point that is worth mentioning is that more genotyping errors are inferred

when using the label method to get the best single haplotype estimate than when

using the minimizing switch distance method. For the label method, the haplotype

allele inference is based on the determination of mother-father labels at each chromo-

some. That is, the haplotype allele inference at each locus is based on the majority

allele on a parental label in the samples. When the number of samples is very small,

this proportion may be poorly estimated. However, when using the minimizing switch

distance method to obtain a single estimate, haplotype allele inference is based on the

sampled haplotype-pair proportion, which tends to be very consistent with the geno-
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type pairs when the genotyping error rate is small. Therefore, the minimizing switch

distance method tends to report fewer G-H inconsistencies than the label method. I

suggest running the program a few times with different starting seeds, and then check-

ing if those different runs report the same G-H inconsistencies. If so, there may be a

potential genotyping error.

As described in section 6.2.1, when using the label method to obtain the best single

estimate, the counts in the s=5, s=L and sw columns include ‘G-H inconsistent’ loci.

Using these penalized error counts to compare with PHASE and fastPHASE may not

be a fair comparison if the truth is that there really are genotyping errors.

7.3 About mutation

As shown in chapter 6, the effects of recombination and mutation interact. For data

sets with different recombination patterns, the three mutation models perform differ-

ently. The results of those three data sets may suggest the following conclusion. When

a data set has a regular recombination pattern (i.e. a strong LD pattern, or obvious

haplotype block structure, like the Daly data), the mutation model ‘m.cl’ performs

best. When a data set has markers close to each other with very low recombination

(like the CEU data), the ‘m.cl’ model also performs best. For a data set that has an

irregular recombination pattern, or many more recombinations (e.g. the YRI data),

then the ‘m.one’ model performs best. Note that, these conclusions are just based on

results of the three data sets. To generalize them, experiments on more similar data

sets are required.
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Three more points about the mutation model are worth mentioning. First, all

three mutation models (m.one, m.l and m.cl) allow one allele to change to any other

allele with equal probability. For microsatellite markers (Nl > 2) this may be unlikely.

Second, the m.cl and m.l mutation models use the same prior for all markers. For real

genetic data, it may be possible to assign a more informative prior to some of the loci,

and this might help increase the accuracy. Third, in order to allow the Markov chain

to move freely in the state space, at first, for all three mutation models, the starting

values of the mutation rates were given a relatively large value of 0.2.

7.4 About recombination

Recombination, as one source of genetic variation, plays a very important role in the

Hidden Markov Model. In fact, the essential role of recombination can be demonstrated

by fitting a simpler model without ancestral haplotypes. That is, there are no ancestral

haplotypes and no parameters related to the recombination (i.e. S, T, Q, m) and only

haplotypes H, genotypes G and genotyping error e are kept in the model. A high-order

Markov model of order d is used as the prior for H (similar to the high order Markov

model for A in chapter 3). That is,

P (H, G, e) = P (H|G, e)P (H)

=





P
∏

p=1

P (Gp|Hp, e)





[

P (H1:d)
L
∏

l=d+1

P (Hl|H(l−d):(l−1))

]

The results (not shown in this thesis) on the Daly data are increasingly good as
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the order of the Markov model increases from d = 1 to d = 4. When d = 4, the results

are close to those obtained based on the Hidden Markov Model. However, for the

YRI data, the results are much worse than the ones obtained from the hidden Markov

model, with the error counts about two times bigger. This shows that the introduction

of “recombination” and ancestral haplotypes is essential, and the hidden Markov chain

is playing a very important role in this haplotype inference model.

7.5 About the best single estimate and the comparison

results

A single estimate (e.g. the mode) is not an ideal way of summarizing the posterior

distribution, and so may not be ideal for comparing methods. As seen for both the

HMM method of this thesis and fastPHASE, two different ways of summarizing the

best single estimate may produce quite different results. This is because when one best

single haplotype estimate is obtained, a lot of useful information in the posterior sam-

ples is discarded. The loss of information is due to the complex dependences between

the phase calls at different markers between and within all individuals (Stephens et al.

2001). A better solution is to access the uncertainty of different haplotype combina-

tions.

In addition, one can see that the results of different runs vary even though one uses

the same best single estimate method. This variation can be seen in PHASE results

for the Daly data as well. This is likely due to lack of convergence of the Markov
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chains in these two models. It might take much longer runs to make the Markov chain

converge, and produce results that do not vary with the random number seed used.

When comparing with PHASE and fastPHASE, the best parameter settings of

my HMM method were used, obtained by training my HMM model on these three

data sets. However, the parameters in the other two methods were not similarly op-

timized. Therefore, this might make my results overly optimistic. It would be more

fair, perhaps, to compare the methods on a new data set where parameter choices

were not previously optimized for that data set. However, the three data sets that

I used have varied genetic structures, and they are real genetic data sets which rep-

resent general genetic variation patterns (i.e. with or without obvious recombination

patterns). Hence, even if I use a new data set, the recombination pattern might not

be dramatically different from those of the data sets I used. The parameter setting

of PHASE has been improved several times in the past several years and I believe

its default setting is the best setting in general. For fastPHASE, I used both a fixed

number of ancestral haplotypes and the cross validation method to select the number

of ancestral haplotypes. Therefore, the comparison result is reasonable.

7.6 About Hardy-Weinberg equilibrium (HWE)

If a population is in HWE, the genotype frequencies of a marker are only dependent

on the allele frequencies. In the context of haplotype inference, this HWE assump-

tion can be interpreted in a more general way, that is, the frequency of each pair of

haplotypes is the product of the haplotype frequencies of those two haplotypes. The
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HWE assumption might not always be satisfied. For example, when the individuals

in a data set are from two different populations, suppose haplotype X only exists in

individuals of one population, haplotype Y only exists in individuals of another pop-

ulation. The frequency of haplotype pair (X,Y) for one specific individual will be 0,

but, under HWE, the frequency of (X,Y) will not be 0 since it is the product of the fre-

quencies of X and Y. The violation of this HWE assumption might affect the accuracy

of haplotype inference. However, several studies (Fallin and Schork 2000, Stephens et

al. 2001, Polanska 2003) have demonstrated that departure from HWE will not affect

the haplotype results dramatically, therefore, no further investigation was conducted

in this study.

7.7 Future research directions

Even though this HMM method can reconstruct haplotypes relatively accurately, it

would be nice if it could perform better. Hence, two potential improvements are

presented. First, the current genotyping error model has only one parameter such

that the error of calling the genotype AA as AB and the error of calling genotype

AA as BB have the same probabilities. A potential improvement is to have different

probabilities for different types of errors. For example, the probability of calling AA as

BB could be much smaller. Second, for some real genetic studies, haplotypes of some

individuals or at some loci may be known. This known information could be added to

the current model by adjusting the scheme of sampling S (ancestral haplotype index),

or by modifying P (G|H) to account for it.
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Besides the above improvements, this thesis research can be extended in the follow-

ing aspects. First, currently the number of ancestral haplotype is fixed as a constant.

The idea of using a Dirichlet process to select the ancestral haplotype number (Xing et

al. 2004) may be applicable. Second, the scope of the study designs could be extended

to case and control data. This may be done by using the same ancestral haplotype

sets for both cases and controls, but letting the other parameters be updated differ-

ently for cases and controls. Third, to date, there have been many disease association

studies using haplotype analysis, usually using a best single estimate. This approach

can lead to a loss of important information among and within individuals (Stephens

et al. 2001, Sham et al. 2004). Therefore, it is worthwhile to do haplotype analysis

(e.g. for association studies) by incorporating the probabilities of different haplotype

combinations.



Appendix A

This appendix lists Figure 2 of Daly et al. (2001) with the original figure description

as follows: “Block-like haplotype diversity at 5q31. A, Common haplotype in each

block of low diversity. Dashed lines indicate locations where more than 2% of all chro-

mosomes are observed to transition from one common haplotype to a different one. B,

Percentage of observed chromosomes that match one of the common patterns exactly.

C, Percentage of each of the common patterns among untransmitted chromosomes.

D, Rate of haplotype exchange between the blocks as estimated by the HMM. We

excluded several markers at each end of the map as they provided evidence that the

blocks did not continue but were not adequate to build a first or last block. In addition,

four markers fell between blocks, which suggests that the recombinational clustering

may not take place at a specific base-pair position, but rather in small regions”.
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This figure is from Daly et al. (2001). Reprinted with permisson from Nature Genetics.



Appendix B

This appendix is the parameter settings of the Hidden Markov Model.

Parameters Explanation

e = 0.001 Genotyping error rate

a1 = b1 = 0.5 Prior for P(A)

hyper.T.flag=“NO” Whether using hyperparameter or not

T=rep(0.95,(L-1)) The starting value for T

alpha=9; beta=1 The starting value if using hyperprior (T )

a.0=6; b.0=1 The parameters for hyperprior (T )

alpha.beta.lower=3 The parameter for hyperprior (T )

alpha.beta.upper=16 The parameter for hyperprior (T )

hyper.m.flag=“NO” Whether using hyperparameter or not

a.m=0.8; b.m=10 Starting value if use hyperprior (m)

a.m0=1; b.m0=6 The parameters for hyperprior (m)

a.m.b.m.lower=3 The parameter for hyperprior (m)

a.m.b.m.upper=30 The parameter for hyperprior (m)

m.MAT=matrix(0.2, C, L) The starting value

m.vector=rep(0.2,L) The starting value

dirichlet = rep(1/C,C) The prior for each Ql

Q = matrix(1/C, C, L) The starting value of Q
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Appendix C

This appendix lists results of 36 runs for the three data sets. The first column of each

long table is the parameter combinations, for example, “C5d0 and m.one”, this means

C=5, d=0 and the mutation model is m.one. The second to the seventh columns of

each table are the results obtained without using hyperparameters for T and m. The

eighth to the thirteenth columns are the results of using hyperparameters for T and

m. For each parameter choice, there are runs with three different seeds, for each seed,

the posterior samples are summarized using two methods (the label method and the

minimizing switch distance method). Therefore, there are six rows in this parameter

combination, the first, third and the fourth row of a parameter combination cell are

the summary results obtained using the label method; the second, fourth and the sixth

rows are the summary results obtained using the minimizing switch distance method.

The sw.pro columns are the switch proportions.

Daly Not using hyperparameters Using hyperparameters

C,d,m mis.G mis.M s5 sL sw sw.pro mis.G mis.M s5 sL sw sw.pro

C5d0 3 13 155 205 103 0.0397 3 13 145 180 86 0.0331

m.one 0 13 113 226 83 0.032 0 13 143 199 93 0.0358

4 12 245 232 132 0.0509 7 14 175 201 97 0.0374

0 12 224 266 130 0.0501 0 14 137 192 84 0.0324
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6 13 174 213 97 0.0374 2 14 169 201 96 0.037

0 13 133 215 95 0.0366 0 14 164 233 99 0.0382

C5d0 5 13 169 213 103 0.0397 10 13 216 230 115 0.0443

m.l 0 13 161 236 100 0.0385 0 13 173 220 104 0.0401

4 13 164 196 104 0.0401 8 13 189 239 105 0.0405

0 13 146 251 94 0.0362 0 13 155 203 92 0.0355

1 13 193 217 108 0.0416 9 13 203 199 93 0.0358

0 13 171 209 103 0.0397 0 13 157 202 89 0.0343

C5d0 1 14 132 218 88 0.0339 7 13 167 219 91 0.0351

m.cl 0 14 116 201 79 0.0304 0 13 115 195 79 0.0304

1 14 136 203 94 0.0362 11 14 189 195 96 0.037

0 14 117 248 89 0.0343 1 13 116 194 79 0.0304

0 13 132 192 95 0.0366 10 13 165 191 85 0.0328

0 13 103 196 78 0.0301 0 13 117 200 81 0.0312

C5d3 5 13 198 239 119 0.0459 1 14 171 209 94 0.0362

m.one 0 13 149 230 96 0.037 0 14 162 191 93 0.0358

8 15 179 184 91 0.0351 3 15 156 214 90 0.0347

0 15 135 224 91 0.0351 0 15 153 219 88 0.0339

3 14 156 211 101 0.0389 5 13 268 251 143 0.0551

0 14 161 226 96 0.037 0 13 245 257 133 0.0513

C5d3 2 12 212 228 115 0.0443 8 13 219 215 113 0.0435

m.l 0 13 192 249 103 0.0397 0 13 187 233 105 0.0405

1 14 178 194 100 0.0385 7 13 182 223 103 0.0397

0 14 155 205 94 0.0362 0 13 151 222 95 0.0366

2 13 160 201 95 0.0366 8 14 239 205 111 0.0428

0 13 154 243 93 0.0358 0 13 191 243 107 0.0412

C5d3 1 15 143 220 91 0.0351 6 13 164 205 91 0.0351

m.cl 0 15 123 198 79 0.0304 0 13 122 221 82 0.0316

0 13 129 190 81 0.0312 9 13 150 201 82 0.0316

0 13 122 239 75 0.0289 0 13 108 189 79 0.0304

0 13 124 189 80 0.0308 11 13 175 192 92 0.0355

0 13 111 210 83 0.032 2 13 111 169 77 0.0297

C10d0 5 14 167 206 95 0.0366 3 15 190 241 111 0.0428

m.one 0 14 126 187 84 0.0324 0 15 166 206 97 0.0374

4 15 153 199 82 0.0316 4 14 146 159 86 0.0331

0 15 137 203 82 0.0316 0 14 128 185 81 0.0312

6 14 172 180 92 0.0355 5 14 174 169 89 0.0343

0 14 129 219 89 0.0343 0 14 149 203 85 0.0328

C10d0 1 13 152 180 88 0.0339 10 13 183 198 92 0.0355

m.l 0 13 131 181 84 0.0324 0 13 128 184 84 0.0324

1 13 160 199 97 0.0374 6 13 159 226 93 0.0358

0 13 136 200 90 0.0347 0 13 143 225 93 0.0358

1 13 139 216 93 0.0358 5 13 200 222 104 0.0401

0 13 115 192 82 0.0316 0 13 159 198 91 0.0351
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C10d0 0 13 128 211 92 0.0355 7 13 156 200 96 0.037

m.cl 0 13 106 207 88 0.0339 1 13 112 175 83 0.032

1 12 111 180 90 0.0347 6 12 159 221 101 0.0389

0 12 93 156 77 0.0297 1 12 114 208 82 0.0316

1 13 129 178 86 0.0331 7 13 163 208 92 0.0355

0 13 105 166 75 0.0289 2 13 108 202 77 0.0297

C10d3 3 14 171 174 90 0.0347 2 14 161 188 96 0.037

m.one 0 15 139 197 88 0.0339 0 14 134 214 90 0.0347

5 13 157 190 85 0.0328 6 14 169 166 82 0.0316

0 14 137 191 82 0.0316 0 14 133 185 80 0.0308

4 13 167 202 97 0.0374 7 14 174 205 91 0.0351

0 14 156 228 91 0.0351 0 14 131 163 77 0.0297

C10d3 2 12 151 200 93 0.0358 10 13 183 192 85 0.0328

m.l 0 13 120 195 85 0.0328 0 13 143 185 83 0.032

2 13 169 187 95 0.0366 9 13 188 219 105 0.0405

0 13 147 200 89 0.0343 0 13 148 252 101 0.0389

2 12 142 184 89 0.0343 5 13 152 173 84 0.0324

0 13 116 154 82 0.0316 0 13 136 212 79 0.0304

C10d3 1 13 126 180 89 0.0343 8 13 167 191 86 0.0331

m.cl 0 13 103 189 76 0.0293 4 13 124 166 77 0.0297

0 12 104 182 76 0.0293 3 14 143 199 85 0.0328

0 13 101 198 76 0.0293 0 13 124 205 84 0.0324

0 13 128 176 92 0.0355 4 13 160 205 94 0.0362

0 13 121 186 85 0.0328 0 13 120 218 85 0.0328

C15d0 3 14 198 217 113 0.0435 2 14 156 194 91 0.0351

m.one 0 14 143 251 92 0.0355 0 14 137 194 78 0.0301

5 15 169 208 88 0.0339 6 14 185 168 100 0.0385

0 15 127 183 82 0.0316 0 14 137 182 86 0.0331

3 14 160 200 86 0.0331 3 14 159 176 86 0.0331

0 14 147 213 85 0.0328 0 14 139 186 82 0.0316

C15d0 1 13 162 192 96 0.037 2 13 144 217 93 0.0358

m.l 0 13 130 201 79 0.0304 0 13 135 220 94 0.0362

4 13 158 168 90 0.0347 2 13 172 205 108 0.0416

0 13 122 187 88 0.0339 0 13 162 208 103 0.0397

3 13 199 195 106 0.0408 4 13 169 183 91 0.0351

0 13 154 224 94 0.0362 0 13 135 210 88 0.0339

C15d0 1 11 109 177 82 0.0316 4 13 150 181 88 0.0339

m.cl 0 11 96 174 74 0.0285 0 13 115 193 76 0.0293

1 14 149 189 91 0.0351 4 13 152 221 89 0.0343

0 14 127 183 83 0.032 0 13 121 200 80 0.0308

0 13 110 155 72 0.0277 7 14 184 193 91 0.0351

0 12 110 171 74 0.0285 1 14 143 175 87 0.0335

C15d3 3 14 150 175 77 0.0297 6 13 161 171 84 0.0324

m.one 0 15 127 213 75 0.0289 0 14 135 178 79 0.0304
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3 14 142 185 80 0.0308 6 14 189 194 93 0.0358

0 14 116 197 81 0.0312 0 14 152 168 80 0.0308

2 14 142 174 82 0.0316 6 14 189 178 93 0.0358

0 14 124 185 82 0.0316 0 14 158 164 86 0.0331

C15d3 2 12 154 174 94 0.0362 5 14 203 214 105 0.0405

m.l 0 13 143 184 87 0.0335 0 14 167 196 101 0.0389

1 12 124 184 87 0.0335 8 13 171 208 91 0.0351

0 13 121 187 83 0.032 0 13 135 193 83 0.032

2 12 162 178 91 0.0351 7 13 158 191 81 0.0312

0 13 143 161 87 0.0335 0 13 114 190 76 0.0293

C15d3 0 12 102 162 77 0.0297 4 13 148 206 93 0.0358

m.cl 0 12 96 181 78 0.0301 2 14 117 169 79 0.0304

2 13 137 155 80 0.0308 11 12 182 170 92 0.0355

0 12 99 170 74 0.0285 6 12 115 155 75 0.0289

0 14 127 193 86 0.0331 4 13 153 183 82 0.0316

0 14 119 215 81 0.0312 1 13 107 192 73 0.0281

Table A1: Results for the Daly data.

YRI Not using hyperparameters Using hyperparameters

C,d,m mis.G mis.M s5 sL sw sw.pro mis.G mis.M s5 sL sw sw.pro

C5d0 1 2 68 99 38 0.0493 1 3 82 116 49 0.0636

m.one 0 1 54 95 40 0.0519 0 0 77 117 51 0.0661

3 2 79 93 43 0.0558 3 2 94 121 52 0.0674

0 1 64 119 44 0.0571 0 0 59 94 40 0.0519

2 2 77 88 55 0.0713 5 0 78 90 49 0.0636

0 1 55 104 43 0.0558 0 0 56 94 45 0.0584

C5d0 0 2 82 106 46 0.0597 2 3 83 88 47 0.061

m.l 0 2 84 126 45 0.0584 0 3 77 98 40 0.0519

0 3 83 107 48 0.0623 3 3 90 117 50 0.0649

0 3 94 115 53 0.0687 0 3 85 133 48 0.0623

0 2 94 88 50 0.0649 3 6 118 128 55 0.0713

0 2 92 92 53 0.0687 0 3 88 130 53 0.0687

C5d0 0 4 120 129 58 0.0752 1 6 102 95 48 0.0623

m.cl 0 2 84 131 48 0.0623 0 2 72 86 45 0.0584

0 2 81 114 48 0.0623 1 1 70 117 43 0.0558

0 2 85 122 51 0.0661 0 0 62 98 41 0.0532

0 4 75 96 44 0.0571 1 5 85 119 47 0.061

0 3 74 116 43 0.0558 0 1 59 129 43 0.0558

C5d3 2 3 94 109 57 0.0739 2 2 84 170 51 0.0661

m.one 0 0 38 87 39 0.0506 0 2 70 148 47 0.061

2 2 81 128 52 0.0674 2 4 90 124 52 0.0674

0 1 56 116 42 0.0545 0 0 64 146 48 0.0623

1 3 86 115 50 0.0649 1 1 76 83 51 0.0661
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0 2 67 111 45 0.0584 0 1 68 80 44 0.0571

C5d3 0 5 104 120 53 0.0687 3 4 100 106 52 0.0674

m.l 0 1 75 112 51 0.0661 0 2 72 91 42 0.0545

0 4 77 101 41 0.0532 4 4 114 163 61 0.0791

0 4 76 111 45 0.0584 0 3 91 151 52 0.0674

0 3 91 91 43 0.0558 3 3 102 111 50 0.0649

0 2 70 86 45 0.0584 0 1 68 107 47 0.061

C5d3 0 3 85 95 45 0.0584 1 4 90 123 53 0.0687

m.cl 0 3 84 100 44 0.0571 0 3 96 128 53 0.0687

0 5 65 106 35 0.0454 1 6 102 134 51 0.0661

0 4 86 113 45 0.0584 0 3 72 103 45 0.0584

0 4 97 114 57 0.0739 1 4 87 111 48 0.0623

0 3 73 102 47 0.061 0 2 70 102 41 0.0532

C10d0 1 0 50 93 40 0.0519 5 2 87 63 40 0.0519

m.one 0 0 44 110 40 0.0519 0 0 49 78 37 0.048

2 2 62 81 36 0.0467 1 1 83 124 47 0.061

0 0 42 58 35 0.0454 0 1 76 90 43 0.0558

2 0 59 115 46 0.0597 4 2 92 109 48 0.0623

0 0 55 109 43 0.0558 0 0 63 100 43 0.0558

C10d0 0 1 82 105 54 0.07 4 2 95 121 51 0.0661

m.l 0 1 78 97 49 0.0636 0 1 71 100 45 0.0584

1 1 69 117 46 0.0597 2 2 74 129 44 0.0571

0 0 64 125 51 0.0661 0 0 56 122 43 0.0558

0 3 91 85 54 0.07 4 4 110 109 50 0.0649

0 1 77 88 50 0.0649 0 2 77 116 48 0.0623

C10d0 0 2 88 89 53 0.0687 2 3 96 103 55 0.0713

m.cl 0 2 79 110 49 0.0636 0 1 77 95 47 0.061

0 3 76 87 44 0.0571 1 2 66 110 42 0.0545

0 2 55 71 34 0.0441 0 0 51 108 39 0.0506

0 2 84 113 52 0.0674 1 1 68 92 44 0.0571

0 2 86 120 55 0.0713 0 1 71 99 44 0.0571

C10d3 1 0 43 124 34 0.0441 2 1 72 98 41 0.0532

m.one 0 0 47 120 36 0.0467 0 0 69 98 40 0.0519

1 2 82 110 46 0.0597 2 2 100 91 47 0.061

0 0 47 93 37 0.048 0 0 74 115 42 0.0545

0 0 43 97 41 0.0532 3 1 77 90 47 0.061

0 0 44 102 40 0.0519 0 0 55 105 41 0.0532

C10d3 0 3 69 51 42 0.0545 4 1 92 95 51 0.0661

m.l 0 1 63 62 41 0.0532 0 0 54 93 40 0.0519

0 3 81 67 48 0.0623 3 0 56 98 43 0.0558

0 1 59 65 42 0.0545 0 0 55 100 41 0.0532

0 0 67 91 45 0.0584 2 1 69 101 43 0.0558

0 0 63 87 42 0.0545 0 0 58 82 41 0.0532

C10d3 0 3 73 119 48 0.0623 3 3 89 102 48 0.0623
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m.cl 0 2 78 117 48 0.0623 0 2 73 107 42 0.0545

0 3 85 98 44 0.0571 1 3 90 143 54 0.07

0 2 86 118 44 0.0571 0 2 71 131 46 0.0597

0 3 80 81 42 0.0545 2 1 63 76 53 0.0687

0 3 69 91 43 0.0558 0 2 61 90 44 0.0571

C15d0 2 0 62 77 41 0.0532 1 1 55 73 41 0.0532

m.one 0 0 44 69 34 0.0441 0 2 58 91 42 0.0545

0 0 58 106 42 0.0545 3 1 81 77 49 0.0636

0 0 45 108 37 0.048 0 1 60 66 43 0.0558

2 0 67 87 45 0.0584 2 1 74 91 47 0.061

0 0 40 74 35 0.0454 0 1 63 105 47 0.061

C15d0 0 2 83 106 47 0.061 2 0 86 119 52 0.0674

m.l 0 1 72 102 44 0.0571 0 0 68 103 43 0.0558

0 2 74 115 49 0.0636 3 2 79 103 42 0.0545

0 1 72 94 49 0.0636 0 0 57 80 43 0.0558

0 4 81 78 41 0.0532 2 1 76 110 47 0.061

0 2 88 104 53 0.0687 0 1 69 108 43 0.0558

C15d0 0 2 90 149 55 0.0713 2 1 80 84 52 0.0674

m.cl 0 2 74 122 47 0.061 0 1 66 96 44 0.0571

0 2 82 117 50 0.0649 2 3 82 100 45 0.0584

0 2 82 137 50 0.0649 0 3 85 83 48 0.0623

0 2 77 122 45 0.0584 1 1 74 127 42 0.0545

0 2 62 110 40 0.0519 0 1 59 106 42 0.0545

C15d3 2 0 65 108 41 0.0532 2 3 92 77 47 0.061

m.one 0 0 48 106 36 0.0467 0 0 57 66 42 0.0545

1 0 62 91 41 0.0532 3 3 91 132 51 0.0661

0 0 46 76 35 0.0454 0 1 84 133 55 0.0713

2 0 58 93 36 0.0467 2 3 94 123 48 0.0623

0 0 55 96 36 0.0467 0 1 78 107 49 0.0636

C15d3 1 4 99 84 50 0.0649 4 2 93 127 47 0.061

m.l 0 1 62 84 41 0.0532 0 0 65 124 40 0.0519

0 1 63 90 43 0.0558 2 2 86 109 47 0.061

0 1 61 108 41 0.0532 0 1 70 109 46 0.0597

0 4 93 80 42 0.0545 1 2 76 116 44 0.0571

0 2 89 111 47 0.061 0 1 47 110 33 0.0428

C15d3 0 4 92 88 51 0.0661 1 3 79 120 45 0.0584

m.cl 0 2 76 117 46 0.0597 0 2 60 115 40 0.0519

0 3 86 109 47 0.061 2 3 91 118 55 0.0713

0 3 75 126 45 0.0584 0 3 76 114 46 0.0597

0 2 74 100 47 0.061 1 3 91 92 49 0.0636

0 1 70 120 47 0.061 0 1 61 94 41 0.0532

Table A2: Results for the YRI data.
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CEU Not using hyperparameters Using hyperparameters

C,d,m mis.G mis.M s5 sL sw sw.pro mis.G mis.M s5 sL sw sw.pro

C5d0 0 0 6 6 4 0.0083 1 0 20 5 8 0.0167

m.one 0 0 5 1 2 0.0042 0 0 15 3 6 0.0125

1 0 10 3 4 0.0083 2 0 20 5 7 0.0146

0 0 5 1 2 0.0042 0 0 15 5 7 0.0146

0 0 4 5 1 0.0021 1 0 10 2 3 0.0062

0 0 4 7 2 0.0042 0 0 5 2 4 0.0083

C5d0 1 0 15 4 6 0.0125 1 0 25 5 9 0.0188

m.l 0 0 15 5 7 0.0146 0 0 20 6 9 0.0188

0 0 15 5 7 0.0146 3 0 21 5 7 0.0146

0 0 15 3 6 0.0125 2 0 10 4 5 0.0104

0 0 15 3 6 0.0125 1 0 14 4 6 0.0125

0 0 15 3 6 0.0125 0 0 10 2 4 0.0083

C5d0 0 0 0 1 1 0.0021 1 0 7 2 3 0.0062

m.cl 0 0 0 0 0 0 2 0 5 1 2 0.0042

0 0 0 2 1 0.0021 1 0 10 3 4 0.0083

0 0 0 2 1 0.0021 0 0 1 8 3 0.0062

0 0 0 1 2 0.0042 1 0 10 3 4 0.0083

0 0 0 2 1 0.0021 0 0 5 2 3 0.0062

C5d3 0 0 5 1 2 0.0042 3 0 20 4 5 0.0104

m.one 0 0 5 1 2 0.0042 0 0 10 9 4 0.0083

0 0 4 12 2 0.0042 2 0 20 4 6 0.0125

0 0 4 12 2 0.0042 0 0 20 4 8 0.0167

1 0 10 2 3 0.0062 2 0 15 4 5 0.0104

0 0 5 1 2 0.0042 0 0 15 4 7 0.0146

C5d3 0 0 20 4 8 0.0167 1 0 30 6 11 0.0229

m.l 0 0 20 4 8 0.0167 1 0 25 5 10 0.0208

0 0 10 3 6 0.0125 2 0 19 4 6 0.0125

0 0 10 4 5 0.0104 0 0 10 3 6 0.0125

0 0 15 3 6 0.0125 2 0 24 5 8 0.0167

0 0 15 5 7 0.0146 1 0 15 5 7 0.0146

C5d3 0 0 0 1 1 0.0021 0 0 0 0 0 0

m.cl 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 2 0.0042 1 0 10 2 3 0.0062

0 0 0 1 2 0.0042 1 0 5 1 2 0.0042

0 0 0 2 1 0.0021 0 0 0 0 0 0

0 0 0 2 1 0.0021 0 0 0 0 0 0

C10d0 0 0 5 1 2 0.0042 2 0 24 5 8 0.0167

m.one 0 0 5 1 2 0.0042 0 0 15 4 8 0.0167

0 0 5 1 2 0.0042 1 0 20 4 7 0.0146

0 0 5 1 2 0.0042 0 0 15 4 7 0.0146

0 0 5 3 3 0.0062 2 0 20 4 6 0.0125
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0 0 5 1 2 0.0042 0 0 15 3 6 0.0125

C10d0 0 0 10 4 5 0.0104 1 0 14 3 5 0.0104

m.l 0 0 10 2 4 0.0083 0 0 10 2 4 0.0083

0 0 15 4 7 0.0146 1 0 24 5 9 0.0188

0 0 10 2 4 0.0083 1 0 20 5 9 0.0188

0 0 15 4 8 0.0167 2 0 19 4 6 0.0125

0 0 15 3 6 0.0125 0 0 10 2 4 0.0083

C10d0 0 0 0 2 1 0.0021 1 0 4 1 1 0.0021

m.cl 0 0 0 1 1 0.0021 0 0 0 1 1 0.0021

0 0 0 1 2 0.0042 2 0 14 3 4 0.0083

0 0 0 1 1 0.0021 0 0 5 1 2 0.0042

0 0 0 0 0 0 2 0 14 3 4 0.0083

0 0 0 1 2 0.0042 0 0 5 1 2 0.0042

C10d3 0 0 5 1 2 0.0042 0 0 5 1 2 0.0042

m.one 0 0 5 1 2 0.0042 0 0 5 1 2 0.0042

0 0 5 1 2 0.0042 0 0 5 1 2 0.0042

0 0 5 1 2 0.0042 0 0 5 1 2 0.0042

0 0 5 3 3 0.0062 0 0 5 1 2 0.0042

0 0 5 3 3 0.0062 1 0 5 1 2 0.0042

C10d3 0 0 20 5 9 0.0188 0 0 15 3 6 0.0125

m.l 0 0 20 6 9 0.0188 0 0 15 3 6 0.0125

0 0 10 2 4 0.0083 1 0 15 3 5 0.0104

0 0 10 3 5 0.0104 1 0 10 2 4 0.0083

0 0 10 3 5 0.0104 0 0 5 1 2 0.0042

0 0 10 3 5 0.0104 0 0 5 1 2 0.0042

C10d3 0 0 0 2 1 0.0021 0 0 5 1 2 0.0042

m.cl 0 0 0 1 2 0.0042 1 0 5 1 2 0.0042

0 0 0 1 1 0.0021 0 0 0 0 0 0

0 0 0 1 2 0.0042 0 0 0 0 0 0

0 0 0 2 1 0.0021 1 0 5 1 1 0.0021

0 0 0 0 0 0 1 0 0 0 0 0

C15d0 0 0 5 3 3 0.0062 2 0 15 4 5 0.0104

m.one 0 0 5 3 3 0.0062 0 0 5 1 2 0.0042

0 0 5 3 3 0.0062 1 0 10 3 5 0.0104

0 0 5 3 3 0.0062 0 0 10 4 5 0.0104

0 0 5 1 2 0.0042 1 0 9 2 3 0.0062

0 0 5 3 3 0.0062 0 0 5 2 3 0.0062

C15d0 0 0 10 4 5 0.0104 2 0 14 3 4 0.0083

m.l 0 0 10 4 5 0.0104 0 0 5 2 3 0.0062

0 0 10 4 5 0.0104 2 0 29 6 10 0.0208

0 0 10 4 5 0.0104 0 0 20 6 9 0.0188

0 0 20 5 9 0.0188 1 0 14 3 5 0.0104

0 0 20 4 8 0.0167 0 0 10 4 5 0.0104

C15d0 0 0 0 1 1 0.0021 2 0 9 2 2 0.0042
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m.cl 0 0 0 1 1 0.0021 0 0 0 1 2 0.0042

0 0 0 0 0 0 2 0 14 3 4 0.0083

0 0 0 2 1 0.0021 0 0 5 2 4 0.0083

0 0 0 2 1 0.0021 1 0 5 2 2 0.0042

0 0 0 1 2 0.0042 0 0 0 1 2 0.0042

C15d3 0 0 5 1 2 0.0042 1 0 10 2 3 0.0062

m.one 0 0 5 1 2 0.0042 1 0 5 1 2 0.0042

0 0 5 1 2 0.0042 0 0 5 1 2 0.0042

0 0 5 1 2 0.0042 0 0 5 1 2 0.0042

0 0 5 1 2 0.0042 1 0 10 2 3 0.0062

0 0 5 1 2 0.0042 0 0 5 1 2 0.0042

C15d3 0 0 15 3 6 0.0125 2 0 19 4 6 0.0125

m.l 0 0 15 3 6 0.0125 0 0 10 3 6 0.0125

0 0 10 3 5 0.0104 2 0 25 5 8 0.0167

0 0 10 4 5 0.0104 2 0 15 3 6 0.0125

0 0 15 5 7 0.0146 1 0 20 4 7 0.0146

0 0 15 4 8 0.0167 1 0 15 3 6 0.0125

C15d3 0 0 0 0 0 0 1 0 10 2 3 0.0062

m.cl 0 0 0 0 0 0 1 0 5 1 2 0.0042

0 0 5 3 3 0.0062 1 0 7 2 3 0.0062

0 0 5 3 3 0.0062 1 0 5 1 2 0.0042

0 0 0 2 1 0.0021 1 0 5 3 2 0.0042

0 0 0 0 0 0 0 0 0 1 2 0.0042

Table A3: Results for the CEU data.
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