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I present two new methods for exactly summing a set of floating-point numbers, and then correctly

rounding to the nearest floating-point number. Higher accuracy than simple summation (rounding

after each addition) is important in many applications, such as finding the sample mean of data.

Exact summation also guarantees identical results with parallel and serial implementations, since

the exact sum is independent of order. The new methods use variations on the concept of a “super-

accumulator” — a large fixed-point number that can exactly represent the sum of any reasonable

number of floating-point values. One method uses a “small” superaccumulator with sixty-seven

64-bit chunks, each with 32-bit overlap with the next chunk, allowing carry propagation to be done

infrequently. The small superaccumulator is used alone when summing a small number of terms.

For big summations, a “large” superaccumulator is used as well. It consists of 4096 64-bit chunks,

one for every possible combination of exponent bits and sign bit, plus counts of when each chunk

needs to be transferred to the small superaccumulator. To add a term to the large superaccu-

mulator, only a single chunk and its associated count need to be updated, which takes very few

instructions if carefully implemented. On modern 64-bit processors, exactly summing a large array

using this combination of large and small superaccumulators takes less than twice the time of sim-

ple, inexact, ordered summation, with a serial implementation. A parallel implementation using a

small number of processor cores can be expected to perform exact summation of large arrays at a

speed that reaches the limit imposed by memory bandwidth. Some common methods that attempt

to improve accuracy without being exact may therefore be pointless, at least for large summations,

since they are slower than computing the sum exactly.
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Introduction

Computing the sum of a set of numbers can produce an inaccurate result if it is done by adding

each number in turn to an accumulator with limited precision, with rounding performed on each

addition. The final result can be much less accurate than the precision of the accumulator if

cancellation occurs between positive and negative terms, or if accuracy is lost when many small

numbers are added to a larger number. Such inaccuracies are a problem for many applications, one

such being the computation of the sample mean of data in statistical applications.

Much work has been done on trying to improve the accuracy of summation. Some methods

aim to somewhat improve accuracy at little computational cost, but do not guarantee that the

result is the correctly rounded exact sum. For example, Kahan’s method (Kahan, 1965) tries to

compensate for the error in each addition by subtracting this error from the next term before it

is added. Another simple method is used by the R language for statistical computation (R Core

Team, 1995–2015), which computes the sample mean of data by first computing a tentative mean

(adding terms in the obvious way) and then adjusting this tentative mean by adding to it the mean

(again, computed in the obvious way) of the difference of each term from the tentative mean. This

method sometimes improves accuracy, but can also make the result less accurate. (For example,

the R expression mean(c(1e15,-1e15,0.1)) gives a result accurate to only three decimal digits,

whereas the obvious method would give the exact mean rounded to about 16 digits of accuracy).

Many methods have been developed that instead compute the exact sum of a set of floating-point

values, and then correctly round this exact sum to the closest floating-point value. This obviously

would be preferable to any non-exact method, if the exact computation could be done sufficiently

quickly.

An additional advantage of exact methods is that they can easily be parallelized, without chang-

ing the result, since unlike inexact summation, the exact sum does not depend on the order in which

terms are added. In contrast, parallelizing simple summation in the obvious way, by splitting the

sum into parts that are summed (inexactly) in parallel, then adding these partial sums, will in

general produce a different result than the simple serial method. Furthermore, the result obtained

will depend on the details of the parallel algorithm, and perhaps on the run-time availability of

processor cores.

Differing results will also arise from serial implementations that do not sum terms in the usual

left-to-right order. Such implementations are otherwise attractive, since many modern processors

have multiple computational units that can be exploited via instruction-level parallelism, if data

dependencies allow it. Summing four numbers as ((a1 + a2) + a3) + a4 does not allow for any

parallelism, but summing them as (a1 + a2) + (a3 + a4) does, although it may produce a different

result. In contrast, focusing on exact computation ensures that any improvements in computational

methods will not lead to non-reproducible results.

Exact summation methods fall into two classes — those implemented using standard floating-

point arithmetic operations available in hardware on most current processors, such as the methods

of Zhu and Hayes (2010), and those that instead perform the summation with integer arithmetic,

using a “superaccumulator”. Hybrid methods using both techniques been investigated by Collange,

Defour, Graillat, and Iakymchuk (2015a,b).

The methods of this paper can be seen as using “small” and “large” variations on a superac-

cumulator, though the “large” variation resembles other superaccumulator schemes only distantly.
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The general concept of a superaccumulator is that it is a fixed-point numerical representation with

enough binary digits before and after the binary point that it can represent the sum of any rea-

sonable number of floating-point values exactly and without overflow. Such a scheme is possible

because the exponent range in floating number formats is limited.

The idea of such a superaccumulator goes back at least to Kulisch and Miranker (1984), who

proposed its use for exact computation of dot products. In that context, the superaccumulator

must accommodate the range of possible exponents in a product of two floating-point numbers,

which is twice the exponent range of a single floating-point number, and the terms added to the su-

peraccumulator will have twice the precision of a single floating-point number. In this paper, I will

consider only the problem of summing individual floating-point values, in the standard (IEEE Com-

puter Society, 2008) 64-bit “double precision” floating-point format, not higher-precision products

of such values. Directly extending the methods in this paper to such higher precision sums would

require doing arithmetic with 128-bit floating-point and integer numbers, which at present is typi-

cally unsupported or slow. In the other direction, exact dot products of “single-precision” (32-bit)

floating-point values could be computed using the present implementation, and exact summation

of single-precision values could be done even more easily (with smaller superaccumulators).

Below, I first describe the standard floating-point and integer numeric formats assumed by the

methods of this paper, and then present the “small” superaccumulator method, whose design in-

corporates a tradeoff between the largely fixed time for initialization and termination and the

additional time used for every term added. I then present a method in which such a small super-

accumulator is combined with a “large” superaccumulator. This method has a higher fixed cost,

but requires less time per term added.

I evaluate the performance of the small and large superaccumulator methods using a care-

fully written implementation in C, which is provided as supplementary information to this paper.

I compare the performance of these new methods with the obvious (inexact) simple summation

method, with a variation on simple summation that accumulates sums of of terms with even and

odd indexes separately, allowing for increased instruction-level parallelism, and with the exact

iFastSum and OnlineExact methods of Zhu and Hayes (2010), who have provided a C++ imple-

mentation. Timing tests are done on sixteen computer systems, that use Intel, AMD, ARM, and

Sun processors launched between 2000 and 2013.

The results show that on modern 64-bit processors, when summing many terms (tens of thou-

sands or more), the large superaccumulator method is less than a factor of two slower than simple

inexact summation, and is significantly faster than all the other exact methods tested. When sum-

ming fewer than about a thousand terms, the small superaccumulator method is faster than the

large superaccumulator method. The iFastSum method is almost always slower than the small

superaccumulator method, except for very small summations (less than about twenty terms), for

which it is sometimes slightly faster. The OnlineExact method is about a factor of two slower

than the large superaccumulator method on modern 64-bit processors. It is also slower or no

faster on older processors, with the exception of 32-bit processors based on the Pentium 4 Netburst

architecture, for which it is about a factor of two faster than the large superaccumulator method.

I conclude by discussing the implications of these performance results, and the possibility for

further improvements, such as methods designed for small summations (less than 100 terms), meth-

ods using multiple processor cores, and implementations of methods in carefully-tuned assembly

language.
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11−bit exponentsign

63 62 52 51 0

52−bit mantissa

XSUM_MANTISSA_BITSXSUM_EXP_BITS

Note: The C code shown later uses the symbols XSUM_EXP_BITS (11) and XSUM_MANTISSA_BITS (52), as
well as the symbols XSUM_EXP_MASK, equal to (1<<XSUM_EXP_BITS)-1, and XSUM_MANTISSA_MASK, equal to
((int64_t)1<<XSUM_MANTISSA_BITS)-1.

Figure 1: Format of an IEEE 64-bit floating-point number.

Floating-point and integer formats

The methods in this paper are designed to work with floating-point numbers in the standard (IEEE

Computer Society, 2008) 64-bit “double-precision” format, which is today universally available, in

hardware implementations, on general-purpose computers, and used for the C language double

data type.

Numbers in this format, illustrated in Figure 1, consist of a sign bit, s, 11 exponent bits, e,

and 52 mantissa bits, m. Interpreting each group of bits as an integer in binary notation, when

e is not 0 and not 2047, the number represented by these bits is (−1)s × 2e−1023 × (1+m2−52).

That is, e represents the binary exponent, with a bias of 1023, and the full mantissa consists of

an implicit 1 followed by the bits of m. When e is 0 (indicating a “denormalized” number), the

number represented is (−1)s × 2−1022 × m2−52. That is, the true exponent is 1−1023, and the

mantissa does not include an implicit 1. A value for e of 2047 indicates plus or minus “infinity”

when m is zero, and a special NaN (“Not a Number”) value otherwise. Note that the smallest

non-zero floating-point value is 2−1074 and the largest non-infinite value is 21023 × (2− 2−52).

I also assume that unsigned and signed (two’s complement) 64-bit integer formats are available,

and are accessible from C by the uint64_t and int64_t data types. These formats are today

universally available for general purpose computers, and accessible from C in implementations

compliant with the C99 standard. Arithmetic on 64-bit quantities is well-supported by recent 64-

bit processors, but even on older 32-bit processors, addition, subtraction, and shifting of 64-bit

quantities are not extraordinarily slow, being facilitated by instructions such as “add with carry”.

Finally, I assume that the byte ordering of 64-bit floating-point values and 64-bit integers is

consistent, so that a C union type with double, int64_t, and uint64_t fields will allow access to

the sign, exponent, and mantissa of a 64-bit floating-point value stored into the double field via shift

and mask operations on the 64-bit signed and unsigned integer fields. Such consistent “endianness”

is not guaranteed by any standard, but seems to be nearly universal on today’s computers (of

both “big endian” and “little endian” varieties) — including Intel x86, SPARC, and modern ARM

processors (though it appears some past ARM architectures may not have been consistent).

Exact summation using a small superaccumulator

I first present a new summation method using a relatively small superaccumulator, which will

prove to be the preferred method for summing a moderate number of terms, and which is also a

component of the large superaccumulator method presented below. The details of this scheme are

4



designed for fast implementation in software, in contrast to some other designs (eg, Kulisch, 2011)

that are meant primarily for hardware implementation.

The most obvious design of a superaccumulator for use in summing 64-bit floating-point values

would be a fixed-point binary number consisting of a sign bit, 1024 + dlog2Ne bits to the left of

the binary point, where N is the maximum number of terms that might be summed, and 1074 bits

to the right of the binary point. The bits of such a superaccumulator could be stored in around 34

64-bit words.

However, this representation has several disadvantages. When adding a term to the superaccu-

mulator, carries might propagate through several 64-bit words, requiring a loop in the time-critical

addition operation. Furthermore, this sign-magnitude representation requires that addition and

subtraction be handled separately, with the sign changing as necessary, necessitating additional

complexities. If the superaccumulator instead represents negative numbers in two’s complement

form, additions that change the sign of the sum will need to alter all the higher-order bits.

Carry propagation can be sped up using a somewhat redundant “carry-save” representation, in

which the high-order bits of each 64-bit “chunk” of the superaccumulator overlap the low-order bits

of the next higher chunk, allowing carry propagation to be deferred for some time. This approach is

used, for example, by Collange, et al. (2015a,b), whose chunks have 8-bit overlap. In the scheme of

Collange, et al., chunks can apparently also have different signs, an arrangement that can alleviate

the problems of representing negative numbers, by allowing local updates without the need to

determine the overall sign of the number immediately.

In the design I use here, the small superaccumulator consists of 67 signed (two’s complement)

64-bit chunks, with 32-bit overlap. Chunks are indexed starting at 0 for the lowest-order chunk.

Denoting the value of chunk i as ci, the number represented by the superaccumulator is defined to

be
66∑
i=0

ci 232i−1075

The ci will always be in the range −(263−1) to 263−1. For convenience, the representation is

further restricted so that the highest-order chunk (for i = 66) is in the range −232 to 232−1. This

representation is diagrammed in Figure 2.

The largest number representable in this superaccumulator is 21069 − 2−1074. It can therefore

represent any sum of up to 245 terms, which would occupy more than 281 terabytes of memory. This

capacity to represent values beyond the exponent range of the 64-bit floating-point format ensures

that the final rounded 64-bit floating-point sum obtained using the superaccumulator will be finite

whenever the final exact sum is within range, even when summing the values in the ordinary way

would have produced overflow for an intermediate result. This is an advantage over methods such

as those of Zhu and Hayes (2010), which use floating-point arithmetic, and hence cannot bypass

temporary overflows.

Due to the overlap of chunks, and the possibility that they have different signs, a single num-

ber can have many possible representations in the superaccumulator. However, a canonical form

is produced when carry propagation is done, which happens periodically when adding terms to

the superaccumulator, and whenever a floating-point number that is the correct rounding of the

superaccumulator’s value is needed. Carry propagation starts at the low order chunk (i = 0), and

proceeds by clearing the high-order 32-bits of each chunk to zero, and adding these bits (regarded
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65

66

64

63

62

0
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2

Note: The C code shown later uses the symbols XSUM_SCHUNKS (67), XSUM_LOW_MANTISSA_BITS (32),
XSUM_HIGH_EXP_BITS (6) and XSUM_LOW_EXP_BITS (5), along with corresponding masks.

Figure 2: Chunks making up a small superaccumulator. There are 67 chunks in the superaccumu-
lator, whose indexes (shown to the right) are related to the high 6 bits of the exponent in a number,
with the low 5 bits of an exponent specifying a position within a chunk. Each chunk is a 64-bit
signed integer, with chunks overlapping by 32 bits. Chunks are shown with overlap above, so that
horizontal position corresponds to the positional value of each bit. The vertical lines at the right
delimit the range of denormalized numbers (note that the rightmost bit is unused). The vertical
line at the left is the position of the topmost implicit 1 bit of the largest possible 64-bit floating
point number. Bits to the left of that are provided to accomodate larger numbers that can arise
when many numbers are summed.

as a signed integer) to the next-higher chunk. The process ends when we reach the highest-order

chunk, whose high-order 32 bits will be either all 0s or all 1s, depending on whether the number

is positive or negative. Note that all chunks other than this highest-order chunk are positive after

carry propagation.

If carried out as just described, carry propagation for a negative number could require modifica-

tion of many higher-order chunks, all of which would be set to −1 (ie, all 1s in two’s complement).

To avoid this inefficiency, the procedure is modified so that such high-order chunks that would have

value −1 are instead set to zero, and the upper 32-bits of the next-lower chunk are set to all 1s (so

that it is now negative), which produces the same represented number.

After carry propagation, all chunks will be no larger than 232 in absolute value. In the procedure

described next for adding a floating-point value to the superaccumulator, the amount added to (or

subtracted from) any chunk is at most 252−1. It follows that the values of all chunks are guaranteed

to remain within their allowed range if no more than 211−1 = 2047 additions are done between

calls of the carry propagation routine. This is sufficiently large that it makes sense to keep only a

global count of remaining additions before carry propagation is needed, rather than keeping counts

for each chunk, or detecting actual overflow when adding to or subtracting from a chunk. Using

only a global count will result in carry propagation being done more often than necessary, but since

the cost of carry propagation should be only a few tens of instructions per chunk, reducing calls

to the carry propagation routine cannot justify even one additional instruction in the time-critical

addition procedure.

Addition of a 64-bit floating-point value to the superaccumulator starts with extraction of the

11 exponent bits and 52 mantissa bits, using shift and mask operations that treat the value as a
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64-bit integer. Note that the sign of the floating-point number is the same as the sign of its 64-bit

integer form, so no extraction of the sign bit is necessary.

If the exponent bits are all 1s, the floating-point value is an infinity or a NaN, which are handled

specially by storing indicators in auxiliary Inf and NaN fields of the superaccumulator. This

operation is typically not highly time-critical, since Inf and NaN operands are expected to be fairly

infrequent.

If the exponent bits are all 0s, the floating-point value is a zero or a non-zero denormalized

number. If it is zero, the addition operation is complete, since nothing need be done to add zero.

Otherwise, the exponent is changed to 1, since this is the true exponent (with bias) of denormalized

numbers.

If the exponent bits are neither all 0s nor all 1s, the value is an ordinary normalized number. In

this case, the implicit 1 bit that is part of the mantissa value is explicitly set, so that the mantissa

value now contains 53 bits.

Further shift and mask operations separate the exponent into its high-order 6 bits and low-

order 5 bits. The high-order exponent bits, denoted i, index one of the first 64 chunks of the

superaccumulator. Chunks i and i + 1 will be modified by adding or subtracting bits of the

mantissa. Due to the overlap of these chunks, this could be done in several ways, but it seems

easiest to modify chunk i by adding or subtracting a 32-bit value, and to use the remaining bits to

modify chunk i + 1.

In detail, the quantity to add to or subtract from chunk i is found by shifting the 53-bit mantissa

left by the number of bits given by the low-order 5 bits of the exponent, and then masking out

only the low-order 32 bits. The shift positions these mantissa bits to their proper place in the

superaccumulator. The quantity to add to or subtract from chunk i + 1 is found by shifting the

53-bit mantissa right by 32 minus the amount of the previous shift. This isolates (without need of

a masking operation) the bits that were not used to modify chunk i, positioning them properly for

adding to or subtracting from chunk i + 1. Note that this quantity will have at most 52 bits, since

at least 1 mantissa bit will be used to modify chunk i.

When modifying both chunk i and chunk i+ 1, whether to add or subtract is determined by the

sign of the number being added. Note that it is quite possible for different chunks to end up with

different signs after several terms have been added, but the overall sign of the number is resolved

when carry propagation is done.

The C code used for this addition operation is shown in Figure 3. A function that sums an

array would use this code (expanded from an inline function) in its inner loop that steps through

array elements. This summation function must call the carry propagation routine after every 2047

additions. This is most easily done with nested loops, with the inner loop adding numbers until

some limit is reached, which is the same form as the inner loop would be if no check for carry

propagation were needed.

Once all terms have been added to the small superaccumulator, a correctly rounded value for the

sum can be obtained, after first performing carry propagation. Special Inf and NaN values must

be handled specially. Otherwise, the chunks are examined starting at the highest-order non-zero

chunk, and proceeding to lower-order chunks as necessary. Note that the sign of the rounded value

is given by the sign of the highest-order chunk.
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/*** Declarations of types used to define the small superaccumulator ***/

typedef int64_t xsum_schunk; /* Integer type of small accumulator chunk */

typedef struct /* A small superaccumulator */

{ xsum_schunk chunk[XSUM_SCHUNKS]; /* Chunks making up small accumulator */

int64_t Inf; /* If non-zero, +Inf, -Inf, or NaN */

int64_t NaN; /* If non-zero, a NaN value with payload */

int adds_until_propagate; /* Number of remaining adds before carry */

} xsum_small_accumulator; /* propagation must be done again */

/*** Code for adding the double ’value’ to the small accumulator ’sacc’ ***/

union { double fltv; int64_t intv; } u;

u.fltv = value;

ivalue = u.intv;

mantissa = ivalue & XSUM_MANTISSA_MASK;

exp = (ivalue >> XSUM_MANTISSA_BITS) & XSUM_EXP_MASK;

if (exp != 0 && exp != XSUM_EXP_MASK) /* normalized */

{ mantissa |= (int64_t)1 << XSUM_MANTISSA_BITS;

}

else if (exp == 0) /* zero or denormalized */

{ if (mantissa == 0) return;

exp = 1;

}

else /* Inf or NaN */

{ xsum_small_add_inf_nan (sacc, ivalue);

return;

}

low_exp = exp & XSUM_LOW_EXP_MASK;

high_exp = exp >> XSUM_LOW_EXP_BITS;

chunk_ptr = sacc->chunk + high_exp;

chunk0 = chunk_ptr[0];

chunk1 = chunk_ptr[1];

low_mantissa = (mantissa << low_exp) & XSUM_LOW_MANTISSA_MASK;

high_mantissa = mantissa >> (XSUM_LOW_MANTISSA_BITS - low_exp);

if (ivalue < 0)

{ chunk_ptr[0] = chunk0 - low_mantissa;

chunk_ptr[1] = chunk1 - high_mantissa;

}

else

{ chunk_ptr[0] = chunk0 + low_mantissa;

chunk_ptr[1] = chunk1 + high_mantissa;

}

Figure 3: Extracts from C code for adding a 64-bit floating point value to a small superaccumulator.
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Denormalized numbers are easy to identify, and do not require rounding.

For normalized numbers, a tentative exponent for the rounded value can be obtained by con-

verting the highest chunk’s integer value to floating point, and then looking at the exponent of the

converted value. This is the only use of a floating-point operation in the superaccumulator rou-

tines. If desired, this operation could be replaced with some other method of finding the topmost

1 bit in a 32-bit word (for instance, binary search using masks). This tentative exponent allows

construction of a tentative mantissa from the highest-order chunk and the next lower one or two

chunks. Chunks of lower order may need to be examined in order to produce a correctly rounded

result, potentially all the way to the lowest-order chunk. Rounding may change the final exponent.

See the code in the supplemental information for further (somewhat finicky) details of round-

ing. At present, only the commonly-used “round to nearest, with ties to even” rounding mode is

implemented, but implementing other rounding modes would be straightforward.

Exact summation using the small superaccumulator has a fixed cost, due to the need to set all

67 chunks to zero initially, and to scan all chunks when carry propagating in order to produce the

final rounded result. As will be seen from the experiments below, this fixed cost is roughly 12.5

times the cost of adding a single term to the superaccumulator. A naive count of operations in the

C code of Figure 3 gives about 19 operations to add a term to the superaccumulator, compared

to 2 operations (fetch and add) for simple floating-point summation. The actual per-term time

ratio is not that bad on modern 64-bit processors, probably because these processors can exploit

instruction-level parallelism. Nevertheless, to obtain good performance for large summations, we

are motivated to look for a scheme with smaller cost per term, even if this increases fixed overhead.

Faster exact summation of many terms with a large superaccumulator

To reduce the per-term cost of summing values with a superaccumulator, we would like to eliminate

from the inner summation loop the operations of testing for special Inf or NaN values, checking the

sign of the term in order to decide whether to add or subtract, and splitting the mantissa bits into

two parts, so they can be added to different chunks. This can be accomplished by using a large

superaccumulator that has 4096 64-bit chunks, one for every possible combination of sign and expo-

nent bits, as well as 4096 16-bit counts, one for each chunk. We still use a small superaccumulator

as well, transferring partial sums from the large superaccumulator to the small superaccumulator

as necessary to avoid loss of information from overflow. The counts in the large superaccumulator

are all initialized to −1; the chunks are not set initially.

The C code for adding a value to this large superaccumulator is shown in Figure 4. It starts

by isolating the sign and exponent bits of the floating-point value, viewed as an unsigned 64-bit

integer, by doing a right shift by 52 bits (with zero fill, so no masking is needed). These 12 bits

will be used to index a 64-bit chunk of the large superaccumulator, and the corresponding 16-bit

count.

The count indexed by the sign and exponent is then fetched, and decremented. If this decre-

mented count is non-negative, it is stored as the new value for this count, and the entire floating-

point value is added, as a 64-bit integer, to the 64-bit chunk indexed by the sign and exponent.

Note that no operation to mask out just the mantissa bits of this value is done. This masking

can be omitted because the undesired bits at the top are the same for every add to any particular

chunk, and are known from the index of that chunk. Since the number of adds that have been done
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/*** Declarations of types used to define the large superaccumulator ***/

typedef uint64_t xsum_lchunk; /* Integer type of large accumulator chunk,

must be EXACTLY 64 bits in size */

typedef int_least16_t xsum_lcount; /* Signed int type of counts for large acc. */

typedef uint_fast64_t xsum_used; /* Unsigned type for holding used flags */

typedef struct

{ xsum_lchunk chunk[XSUM_LCHUNKS]; /* Chunks making up large accumulator */

xsum_lcount count[XSUM_LCHUNKS]; /* Counts of # adds remaining for chunks,

or -1 if not used yet or special. */

xsum_used chunks_used[XSUM_LCHUNKS/64]; /* Bits indicate chunks in use */

xsum_used used_used; /* Bits indicate chunk_used entries not 0 */

xsum_small_accumulator sacc; /* The small accumulator to condense into */

} xsum_large_accumulator;

/*** Code for adding the double ’value’ to the large accumulator ’lacc’ ***/

union { double fltv; uint64_t uintv; } u;

u.fltv = value

ix = u.uintv >> XSUM_MANTISSA_BITS;

count = lacc->count[ix] - 1;

if (count < 0)

{ xsum_large_add_value_inf_nan (lacc, ix, u.uintv);

}

else

{ lacc->count[ix] = count;

lacc->chunk[ix] += u.uintv;

}

Figure 4: Extracts from C code for adding a 64-bit floating point value to a large superaccumulator.

is also kept track of in the count, the effect of adding these bits can be undone before transferring

the sum held in the chunk to the small superaccumulator.

If instead the decremented count is negative, a routine to do special processing is called. This

test merges a check for the value being an Inf or NaN, a check for the indexed chunk having not

yet been initialized, and a check for having already done the maximum allowed number (4096)

of adds to the indexed chunk, so that the chunk’s contents must now be transferred to the small

superaccumulator.

Since all these circumstances are expected to arise infrequently, the special processing routine is

not time-critical. It operates as follows. When the exponent bits in the index passed to this routine

are all 1s, the value being added is an Inf or NaN, which is handled by setting special fields of

the small superaccumulator associated with this large superaccumulator. The count for this index
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remains at −1, so that subsequent adds of this Inf or NaN will also be processed specially. For

other exponents, if the count (before being decremented) is −1, indicating that this is the first use

of this chunk, the chunk is initialized to zero, and the count is set to 4096. Otherwise, the count

must be zero, indicating that the maximum of 4096 adds have previously been done to this chunk,

in which case the sum is transferred to the small superaccumulator, the chunk is reset to zero, and

the count is reset to 4096. In the latter two cases, the addition then proceeds as usual (adding to

the chunk and decrementing the count).

The partial sum in a large superaccumulator chunk will need to be transferred to the small

superaccumulator when the maximum number of adds before overflow has already been done, or

when the final rounded result is desired. When the maximum of 4096 adds has been done, the bits

in the chunk are the correct sum of mantissa bits, without any further adjustment, since adding the

same sign and exponent bits 4096 times is the same as multiplying by 4096, which is the same as

shifting these bits left 12 positions, which removes them from the 64-bit word. When the transfer

to the small superaccumulator is done before 4096 adds to the chunk, we need to add to the chunk

the the chunk’s index (the sign and exponent bits) times the count of remaining allowed adds,

shifted left 52 bits, which has the effect of leaving only the sum of mantissa bits.

The sum of the mantissa bits for all values that were added to this chunk has unsigned magnitude

up to 264−212, so all 64 bits of the chunk are used. There would be several ways of transferring these

bits to the small superaccumulator, but it seems easiest to do so by modifying three consecutive

small superaccumulator chunks by adding or subtracting 32-bit quantities. Conceptually, these

three 32-bit quantities are obtained by shifting the 64-bit chunk left by the number of positions

given by the low 5 bits of the exponent (the same as the low 5 bits of the chunk index), and

then extracting the lowest 32 bits, the next 32 bits, and the highest 32 bits. However, since shift

operations on quantities greater than 64 bits in size may not be available, the equivalent result is

instead found using a some left and some right shifts, and suitable masking operations. For chunks

corresponding to normalized floating-point values (ie, for which the exponent is not zero), we also

add in the sum of all the implicit 1 bits at the top of the mantissa (which would be beyond the

top of the 64-bit chunk) to the appropriate 32-bit quantity. Finally we either add or subtract these

three 32-bit quantities from the corresponding chunks of the small superaccumulator according to

the sign bit, which is the top bit of the 12-bit index of the chunk.

The fixed cost of summation using a large superaccumulator is greater than that of using only a

small superaccumulator because of the need to initialize the array of 4096 counts, occupying 8192

bytes. Note this is in addition to the fixed costs of using the small superaccumulator, which is still

needed as well. Note, though, that the 4096 large superaccumulator chunks, occupying 32768 bytes,

are not initialized, but instead are set to zero only when actually used. For many applications, it

will be typical for only a small fraction of the chunks to be used, because the numbers summed

have limited range, or are all the same sign.

It is also necessary to transfer all large superaccumulator chunks to the small superaccumulator

when the final rounded result is required. The obvious way of doing this would be to look at all

4096 counts, transferring the corresponding chunk if the count is not −1. The overhead of this can

be reduced by keeping an array of 64 flag words, each a 64-bit unsigned integer, whose bits indicate

which chunks have been used. These flag words can be used to quickly skip large regions of unused

chunks. This scan can be further sped up, in many cases, using a 64-bit unsigned integer whose bits

indicate which of the 64 flag words are not all zero. Maintaining these flag words slightly increases
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the cost of processing a chunk when its count is negative, but does not increase the cost of the

inner summation loop.

A naive count of operations for adding one term in the C code of Figure 4 gives only about 8,

compared to about 19 in Figure 3. And indeed, we will see below that summing large arrays using a

large superaccumulator is about twice as fast as summing them using only a small superaccumulator.

Performance evaluations

The relative performance of different method for summing the elements in an array will depend on

many factors. Some concern the problem instance — such as the number of terms summed, and

the range of numerical values spanned by those terms. Others concern the computing environment

— such as the architecture of the processor, the speed of memory, and which compiler is used.

There will also be random noise in measurements.

The resulting variability has led Langlois, Parello, Goossens, and Porada (2012) to despair of

obtaining meaningful times on real machines, and to instead advocate assessing exact summation

methods based on reproducible measurements from a simulation of how long a program would run

on a hypothetical ideal processor in which instruction-level parallelism (ILP) allows each operation

to be performed as soon as the operands it depends on have been computed. While this work does

provide insight into the methods they assess, it does not answer the practical question of how well

the methods perform on real computers.

Here, I will use time measurements on real computer systems to assess performance in a way

that is both directly useful and provides some insight into the factors affecting performance of

summation methods. Sixteen computer systems with a variety of characteristics were used, many

of them in conjunction with several compilers.

I limited the scope of this assessment to serial implementations. Although many of the processors

used have multiple cores or threads, only a single thread was executing during these tests. (The

systems were largely idle apart from the test program itself.)

The small and large superaccumulator methods were implemented in C, with careful attention

to efficiency. Several code segments were implemented twice, once in a straightforward manner

(without obvious inefficiencies), and a second time with attempts at manual optimizations, such

as loop unrolling and branch avoidance. The straightforward implementation might be the most

efficient, if the compiler produces superior optimization decisions. This was not found to be the

case, however, so the manually-optimized versions were used.

The simple summation routines were similarly implemented (with manually optimized versions

chosen). The ordered summation routine adds each term in turn to a 64-bit double-precision

accumulator. The unordered summation routine uses separate accumulators for terms with even

and odd indexes, then adds them together at the end. This allows scope for instruction-level

parallelism.

For the iFastSum and OnlineExact methods of Zhu and Hayes (2010), I used the C++ imple-

mentation provided by them as supplementary information to their paper. From casual perusal,

this C++ code appears to be a reasonably efficient implementation of these methods, but it is

possible that it could be improved.
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The C/C++ compilers used were gcc-4.6, gcc-4.7, gcc-4.8, gcc-4.9, clang-3.4, clang-3.5, and

clang-3.6. For many of the systems, more than one of these compilers were available. Choice of

compiler sometimes had a substantial impact on the performance of the various methods, and the

most recent compiler version was not always the best. Since relative as well as absolute performance

differed between compilers, an arbitrary choice would not have been appropriate. Instead, for each

method a best choice of compiler from among those available was made, based on the time summing

1000 terms for the small superaccumulator and iFastSum methods, on the time summing 10000

terms for the two simple summation methods, and on the time summing 100000 terms for the large

superaccumulator and OnlineExact methods. The compiler chosen for each method was then used

for summations of all sizes done with that method.

Seven array sizes were tried, ranging from N = 10 to N = 107 by powers of ten, which covers

the sizes relevant to the sizes of data caches in the processors tested. This range of sizes also shows

the effects of fixed versus per term costs for the various methods. Each summation was repeated

R = 109/N times, and the total time for all summations was recorded, along with the total time

divided by the total number of terms summed (which was always 109), which was reported in

nanoseconds per term, and is what is shown in the plots below.

Note that due to the R-fold repetition, with R at least 10, summing arrays of a size for which

all the data fits in the memory cache should result in most memory accesses being to cache. The

processors used all have at least two levels of cache, whose sizes are shown by vertical lines in the

plots, at the number of terms for which the data would just fit in that level cache.

In order to limit the effort needed for this assessment, I mostly used only a single distribution

for numeric elements of the arrays summed, as follows. The terms in the first half of each array

that was summed were independent, with values given by U1 exp(30U2), with U1 and U2 being

pseudo-random values uniformly drawn from (0, 1) using a multiplicative congruential generator

with period 67101322. (The standard C rand generator was avoided, since it is not the same on

all systems.) The terms in the second half of the array were the negations of the mirror reflection

of the terms in the first half — that is, element N−1−i was the negation of element i. The exact

sum of all terms was therefore zero. I also performed a few tests in which the elements of the array

were randomly permuted before being summed, as discussed after the main results shown in the

figures.

Figures 5 though 9 show the results of the performance tests, with the six methods indicated by

colour and solid vs. dashed lines as shown in the key above Figure 5. The processor manufacturer,

model, and year of release are show above each plot.

Performance on six 64-bit Intel systems and two 64-bit AMD systems (which use the Intel In-

struction Set Architecture) is shown in Figures 5 and 6. The Xeon and Opteron processors are

designed for use in servers and high-end workstations. The Intel Core 2 Duo is from an Apple

MacBook Pro, the Intel Celeron 1019Y is from a low-end Acer AspireV5 laptop, and the AMD

E1-2500 is from a low-end Gateway desktop system. The six Intel processors span three major mi-

croarchitecture families — “Core” (Core 2 Duo, Xeon E5462), “Nehalem” (X5680), and “Sandy/Ivy

Bridge” (Xeon E3-1225, Xeon E3-1230 v2, and Celeron 1019Y). The two AMD processors also have

different microarchitectures — “Piledriver” (Opteron 6348) and “Jaguar” (E1-2500).

The qualitative picture from these tests on modern processors is quite consistent. The large

superaccumulator method is faster than the small superaccumulator method when summing more
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Figure 5: Performance of summation methods on six 64-bit Intel systems.
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AMD Opteron 6348, 1.4 GHz, 2012 AMD E1-2500, 1.4 GHz, 2013
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Figure 6: Performance of summation methods on two 64-bit AMD systems (Intel ISA).
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number of terms

na
no

se
co

nd
s 

pe
r 

te
rm ●

● ● ● ● ● ●

●

●

● ● ● ●

●

●
● ●

●
●

●

●

●

● ●
● ●

●

●
● ●

● ● ●

●

●

●

●

● ● ●

0.
5

1
2

4
8

16
32

64
12

8

1 2 3 4 5 6 7
10 10 10 10 10 10 10

number of terms

na
no

se
co

nd
s 

pe
r 

te
rm

●

●
● ● ● ● ●

●

●

●

●
●

● ●

●

●
● ●

●

●

●

●

●

●

● ● ●

●

●
● ● ●

●
●

●

● ●
● ●

●
●

0.
5

1
2

4
8

16
32

64
12

8

1 2 3 4 5 6 7
10 10 10 10 10 10 10

Figure 7: Performance of summation methods on four 32-bit Intel systems. The Intel Xeon X5355
is a 64-bit capable processor, but was run in 32-bit mode.
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ARMv6 Processor, 700 MHz, 2003 Cortex-A9 ARMv7 Processor, 1 GHz, 2008
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Figure 8: Performance of summation methods on two 32-bit ARM systems.
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Figure 9: Performance of summation methods on two 64-bit SPARC systems.

than about 1000 terms. Similarly, the OnlineExact method is faster than the iFastSum method

when summing more than about 2500 terms. The combination of the two superaccumulator meth-

ods — the small superaccumulator method for less than 1000 terms, and the large superaccumulator

method for 1000 terms or more — is superior to any combination of the iFastSum and OnlineExact

methods, except that for some processors iFastSum is slightly faster when summing very small

arrays (less than about thirty terms, or less a few hundred terms for the AMD Opteron 6348

processor).

The advantage of the large superaccumulator method over the OnlineExact method for summing

a large number of terms (10000 or more) is about a factor of two, except that for some processors

this decreases (to nothing for the AMD Opteron 6348) when summing very large arrays, for which

out-of-cache memory access time dominates. The advantage of the small superaccumulator method

over iFastSum when summing small arrays is less (non-existent for the Intel Core 2 Duo and the

AMD Opteron 6348), but the small superaccumulator method nevertheless appears to be generally

preferable to iFastSum for other than very small sums.
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The large superaccumulator method is no more than about a factor of two slower than simple

ordered summation, when summing 10000 or more terms. For the AMD Opteron 6348, the large

superaccumulator method is only slightly slower than simple summation, though for the AMD

E1-2500 the ratio of times is slightly greater than two. The difference between the large superaccu-

mulator method and simple ordered summation is often less for very large summations, as expected

if time for out-of-cache memory accesses starts to dominate.

The simple summation method that adds terms out of order is about twice as fast as simple

ordered summation, except for summing very large arrays, for which its advantage is usually less

(sometimes non-existent). For array sizes of 10000 and 100000, simple unordered summation is

typically about three times faster than the large superaccumulator method.

How the methods perform on four 32-bit Intel processors is shown in Figure 7. The Intel Pentium

III processor uses the “P6” microarchitecture, which is a distant ancestor of the “Core” microarchi-

tecture of the Intel Xeon X5355. The Intel Xeon (1.7 GHz) and Intel Pentium 4 use the “NetBurst”

microarchitecture. The Intel Pentium III processor uses the 387 floating-point unit for floating-

point arithmetic, whereas the other processors have the SSE2 floating-point instructions, which

have more potential for instruction-level parallelism.

As was the case for the 64-bit processors, we see that for summing large arrays, the large su-

peraccumulator method is better than the small superaccumulator method, and the OnlineExact

method is better than the iFastSum method. The combination of small and large superaccumulator

methods is better than the combination of iFastSum and OnlineExact for the Intel Pentium III, ex-

cept for very small arrays. The advantage of the large superaccumulator method over OnlineExact

is a factor of two when summing 10000 terms, but is not as large for 1000 terms (probably because

of fixed overhead) or for 100000 terms (probably because out-of-cache memory access time starts

to dominate). For the Intel Xeon X5355, the large superaccumulator method has only a slight ad-

vantage when summing 1000 terms, and the superaccumulator methods perform almost identically

to iFastSum+OnlineExact for other sizes (with the small superaccumulator method being slower

than iFastSum for very small sums).

For the two processors with “NetBurst” microarchitecture – the Intel Xeon at 1.7 GHz and the

Intel Pentium 4 — the picture is quite different. For these processors, the combination of iFastSum

and OnlineExact is better than the combination of the small and large superaccumulator methods

for all array sizes. The advantage of OnlineExact over the large superaccumulator method is almost

a factor of two for summing large arrays. For smaller arrays, there is less difference between the

methods. One might speculate that this reflects a design emphasis on floating-point rather than

integer performance in the “NetBurst” processors. One can see that for summing 10000 terms,

both the small and large superaccumulator methods are actually slower on the 1.7 GHz Xeon than

on the 1 GHz Pentium III, whereas both simple summation and the OnlineExact method perform

substantially better.

For all these 32-bit Intel processors, the ratios of the times for the exact summation methods

to the times for simple summation are substantially greater than for the 64-bit processors (though

less so for very large summations, where out-of-cache memory access time is large). This also may

reflect a somewhat specialized design philosophy for these processors, in which general-purpose

computation was supported only with 32-bit registers and operations, whereas support for 64-bit

floating-point computations was similar to that found in modern 64-bit processors.
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Figure 6 shows result on two 32-bit ARM processors. For the ARMv6 processor, the combination

of small and large superaccumulator methods performs better than iFastSum+OnlineExact, but

for the Cortex-A9 ARMv7 processor the comparison is mixed. The exact summation methods are

again slower compared to simple summation than is the case for the modern 64-bit processors.

Finally, Figure 9 shows results for two UltraSPARC 64-bit processors. For both processors, the

combination of the small and large superaccumulator methods performs significantly better than

iFastSum+OnlineExact. The performance of the superaccumulator methods is slower compared to

simple summation for these processors than for the 64-bit Intel and AMD processors. One should

note that the UltraSPARC T2 Plus is optimized for multi-threaded workloads, with 8 threads per

core, so a performance comparison using a single thread, as here, may be misleading.

One can measure the fixed overhead of the small superaccumulator method by looking at the

ratio of the time per term for 10 terms and for 100 terms. This ratio is roughly 2 for most of the

processors tested. Assuming that the time for a summation can be modelled as a + bN , where

N is the number of terms, a is the fixed cost, and b is the per term cost, one can work out

that a/b is about 12.5, as was mentioned earlier. This model does not work well for the large

superaccumulator method, perhaps because the “fixed” overhead is not actually fixed when N is

small, since the number of chunks used in the large superaccumulator will grow at a substantial

rate with the number of terms summed when N is still fairly small.

I did a few timing runs in which the elements of the arrays were randomly permuted before

summing them. This has the effect of mixing positive and negative terms randomly (rather than

all positive terms coming before all negative terms), and also affects the contents of the superac-

cumulators at intermediate stages. This permutation had little effect on the performance of the

large superaccumulator and OnlineExact methods. However, it did increase the time for the small

superaccumulator method on some processors, including recent ones. This is perhaps due to the

conditional branch in the inner loop shown in Figure 3, which can be well-predicted if many terms

in a row have the same sign, but not if positive and negative terms are mixed, which will affect

the time on processors that do speculative execution of instructions that may follow a branch. The

time for the iFastSum method was not affected as much, so the relative advantage of the small

superaccumulator method over iFastSum was smaller, though the small superaccumulator method

was still faster when summing at least 100 terms.

Kahan’s (1965) method for reducing summation error (but without producing the exact result)

was also tested on all systems. On modern 64-bit processors, computing the exact sum with the

large superaccumulator method was faster than Kahan’s method for summations of more than about

1000 terms. Kahan’s method was significantly faster than the small superaccumulator method only

for summations of less than about 100 terms.

I also implemented functions for computing the squared norm of a vector (sum of squares of

elements) and the dot product of two vectors (sum of products of corresponding elements) using

the small and large superaccumulator methods for the summations. (The products were computed

as usual, with rounding to the nearest 64-bit double-precision floating point number.) I compared

these implementations with versions using simple ordered and unordered summation. The results

for the Intel E3-1230 v2 and the AMD Opteron 6348 are shown in Figures 10 and 11.

The times shown in these figures are somewhat disappointing. Considering that the inner loops

of the superaccumulator methods make no use of the processor’s floating-point instructions, I had
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Figure 10: Performance of squared norm on recent Intel and AMD high-end processors.
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Figure 11: Performance of dot product on recent Intel and AMD high-end processors.

hoped that the multiplications in these functions would be executed in parallel with the integer

operations on the superaccumulator, with the result that the squared norm of a vector would

be computed in no more time than required for summing its elements (and similarly for the dot

product, if the two vectors remain in cache memory). This is true for the small superaccumulator

method on the AMD Opteron 6348, but for the large superaccumulator method on this processor,

and for both superaccumulator methods on the Intel E3-1230 v2, the time required for computing

the squared norm is noticeably greater than the time for summing the elements with the same

method. In contrast the times for computing the squared norm using simple ordered and unordered

summation are indistinguishable from the times for simple summation, for vectors of length 1000

or more. The picture is the same for computation of the dot product, until the greater memory

required becomes a factor for large vectors.

The reason for this worse than expected performance is not apparent, but one might speculate

that the compilers simply fail to arrange instructions in a manner that would allow for exploita-

tion of the instruction-level parallelism that would seem to be possible. Note, however, that for
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large vectors the times to compute the squared norm or dot product with exact summation are

nevertheless still less than a factor of two greater than the times using simple ordered summation.

More information on these performance assessments, including details of the computer systems

and compilers used, is included in the supplementary information for this paper.

Discussion

On modern 64-bit processors, serial implementations of the two new exact summation methods

introduced in this paper dominate, in combination, what appears to be the best combination of

previous exact summation methods — the iFastSum and OnlineExact methods of Zhu and Hayes

(2010). The advantage is typically about a factor of two for large summations. Note also that

the superaccumulator methods produce a finite final result whenever the correct rounding of the

exact sum is representable as a finite 64-bit floating-point number, whereas the methods of Zhu

and Hayes may produce overflow even when the final result can be represented.

With the improvement in performance obtained with these superaccumulator methods, exact

summation is less than a factor of two slower than simple ordered summation, and about a factor

of three slower than simple unordered summation, when summing more than a few thousand terms.

For large vectors, computing the sum exactly is faster than attempting to reduce (but not eliminate)

error using Kahan’s (1965) method, and Kahan’s method has a significant speed advantage only

when the number of terms is less than about one hundred.

For many applications, the modest extra cost of computing the exactly-rounded sum may be

well worth paying, in return for the advantages of accuracy. Exact summation also has the natural

advantage of being reproducible on any computer system that uses standard floating point, unlike

the situation when a variety of unordered summation methods are used.

The implementation of the small and large superaccumulator methods can probably be improved.

In the inner loop of the small superaccumulator method, the conditional branch testing whether

a term is positive or negative could be eliminated (shifting the term right to produce all 0s or all

1s, then XOR’ing to conditionally negate), although this might be slower when the terms actually

all have the same sign. The significant variation in performance seen with different compilers may

indicate that none of them are producing close to optimal code. Future compiler improvements

might therefore speed up the performance of the exact summation methods. Alternatively, it seems

likely that performance could be improved by rewriting the routines in assembly language.

One would also expect that using more than one processor core would allow for faster exact sum-

mation. Collange, Defour, Graillat, and Iakymchuk (2015a,b) and Chohra, Langlois, and Parello

(2015) both describe parallel implementations of exact summation. Although these authors con-

sider a variety of parallel architectures, I will limit discussion here to parallelizing exact summation

on a shared memory system with multiple general-purpose processor cores or threads.

In this context, any exact summation method can be parallelized in a straightforward way by

simply splitting the array to be summed into parts, summing each part in parallel (retaining the

full exact sum) and then adding together the partial sums before finally rounding to a single 64-

bit floating point number. For the methods of this paper, this would require writing a routine

to add together two small superaccumulators, a straightforward operation that would take time

comparable to that for producing the final rounded result from a small superaccumulator. Of course,
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it is possible that more integrated algorithms might be somewhat faster, but for large summations,

this simple approach should exploit most of the possible parallelism available from using a modest

number of cores (eg, the two to eight cores typical on current workstations).

For very large summations, the results in Figures 5 and 6 suggest that only a few cores will be

needed to reach the limits imposed by memory bandwidth. For example, the Intel Xeon E3-1230 v2

processor has a maximum memory bandwidth of 25.6 GBytes/s, which is 0.3125 ns per 8-byte

floating-point value. When summing arrays of 107 elements, the large superaccumulator method

takes 1.16 ns/term, which is 3.7 times larger than the limit imposed by memory bandwidth, sug-

gesting that 4 cores would be enough to sum terms at the maximum possible rate. Since the

bandwidth achievable in practice is probably less than the theoretical maximum, it may be that

fewer than 4 cores or threads would suffice. (The E3-1230 v2 processor has 4 cores, each of which

can run 2 threads.)

The issue is more complex for summations of around 104 to 106 terms, which may well reside in

faster cache memory, which may or may not be shared between cores. Experimental evaluations

seem essential to investigating the limits of parallel summation in this regime.

One should note that when comparing methods that all produce the exact result, and all do so

at the maximum rate, limited by memory bandwidth, the methods can still be distinguished by

how many cores or threads they use in order to achieve this. This is an important consideration

in the context of a whole application that runs other threads as well, and in the wider context of

a computer system performing several jobs,

The small superaccumulator method, as well as iFastSum, are rather slow when summing only

a few terms, being ten to twenty times slower than simple ordered summation. The small super-

accumulator method sets 67 8-byte chunks to zero on initialization, and must scan them all when

producing a rounded result. This fixed cost dominates the per term cost when summing only a

few terms. This will limit use of exact summation in applications where many small summations

are done, which might be of as few as three terms. (Sums of two terms are exactly rounded with

standard floating-point arithmetic.)

Several approaches could be considered for reducing this fixed overhead. One might replace the

full array of 67 chunks with a small list of the non-zero chunks. Or one might instead keep track

of which chunks are non-zero in a bit array, foregoing actually setting the value of a chunk until it

becomes non-zero, and also using these bits to quickly locate the non-zero chunks when producing

the final rounded result. These approaches would increase the cost per term, so the current small

superaccumulator method would probably still be the fastest method for moderate-size summations.

My original motivation for considering exact summation was improving the accuracy of the

sample mean computation in R. In this application, the overhead of calling the mean function in

the interpretive R implementation will dominate the fixed overhead of the small superaccumulator

method, so finding a faster method for very small summations is not essential.

Computing the sample mean by computing the exactly rounded sum of the data items and

then diving by the number of items will not produce the correct rounding of the exact sample

mean, though it will be quite close (assuming overflow does not occur). However, it should be

straightforward to write a function that directly produces the correct rounding of the value in a

small superaccumulator divided by a positive integer. I plan to soon implement such an exact

sample mean computation in my pqR implementation of R (Neal, 2013–2015).
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