STA 247 — Assignment #2, Due at start of lecture on November 22

Please submit your assignment on 8 1/2 by 11 inch paper, stapled in the upper-left corner. Do
not put it in an envelope or folder. Put your name, student number, and lecture section (Day
or Evening) on the first page.

Late assignments will be accepted only with a valid medical or other excuse.

This assignment is to be done by each student individually.

Question 1: You roll ten fair six-sided dice. Let the sum of the numbers shown on all ten dice
be R. You then flip a fair coin R times. Let the number of times the coin lands heads be H and
the number of times the coin lands tails be 7. (So H + T will be equal to R.)

Find each of the quantities below. You must produce an actual numerical answer, as a simple
fraction (eg, 3/8) or decimal number (eg, 0.375). You must also justify how you obtained your
answer in terms of theorems in the book.

Question 2: Hash tables are a way of storing information so that it can be quickly looked up.
Hash tables are often used by compilers, for example, to store names of variables in the program
being compiled. Entries in a hash table are distinguished by having different keys — eg, the
name of a variable in a program. Other information will usually be stored along with the key
(eg, the type of the variable), but for this question we’ll assume that we store just the key. We
need to have a way of adding new keys to the table, and of seeing whether or not a key is present
in the table.

Hash tables are based on the use of a hash function that maps keys to integers in some
range. This mapping is designed to be more-or-less “random”, so that different keys usually
map to different integers. One simple way to map a key that is a character string to an integer
in the range 0 to S — 1 is to add together the codes (eg, ASCII codes) for all the characters
in the string, and then take the remainder when dividing by S (ie, we take the value modulo
S). For a key that is an integer, we can just take the key itself modulo S. There are many
other schemes for hash functions, however, some of which may be better than this scheme. (For
instance, this scheme will produce the same hash value for strings that differ only in the order
of the characters, which may be undesirable.)

If we use a hash function that maps keys to integers from 0 to S — 1, we will use a hash table
containing S buckets, in which keys may be stored, implemented as a vector or array. Initially,
these buckets are empty (and marked as such using some special key value). To add a key to
the table, we compute its hash value, and then store the key in the bucket indexed by this hash
value. (For a language that indexes arrays starting with zero, we can just use the hash value as
an index; for a language such as R that indexes arrays starting with one, we need to add one to
the hash value to produce an index for the corresponding bucket.)



Here’s a picture of a hash table with size S = 5 to which we’ve added keys “mary” and
“fred”, which we’ll suppose have hash values of 3 and 1:

fred mary

fred

w N -k O

mary

4

If we now want to find out whether “mary” is in the table, we compute its hash value of 3, look
in bucket 3, and see that “mary” is indeed there. If we look for “bert”, with hash value 2, we
will see that bucket 2 is empty, so “bert” isn’t in the table. If we look for “sally”, with hash
value 1, we will see that “fred” is in bucket 1, so “sally” isn’t in the table (but see below for how
this procedure will have to be modified). Note that we can quickly find out whether a key is in
the table without having to look at all the buckets. This speed of search is why hash tables are
attractive.

Suppose we now try to add the key “george”, which has a hash value of 3. We have a
problem, since bucket 3 is already occupied by “mary” — this is called a collision. There are
many ways of resolving this problem. One way is to say the each bucket contains not just one
key (or nothing), but rather a linked list of keys, in which we can hold as many keys as needed.
Another way, which we’ll consider for this assignment, is to move on to another bucket when
the one indexed by the hash value is already occupied. For example, we might just move to the
next bucket, wrapping around to the first bucket if we reach the end of the table. With this
scheme, we’d add “george” (whose hash value is 3) to the previous table as follows:

0

1 fred

5 george
3 mary

4 george

When using this scheme, we can no longer assume that a key that isn’t in the bucket corre-
sponding to its hash value isn’t in the table. We have to look at the next bucket, the bucket
after that, etc. until we either find the key or we reach an empty bucket. This slows down the
search for a key in the table.

A problem with this scheme is that we can sometimes end up with solid “clusters” of keys in
one section of the table. If we try to add a key whose hash value is in this section, we’ll have to
move forward many buckets to find a place to put it, and finding it later will be slow. To reduce
this problem, we might move forward by a variable number of buckets when a collision occurs,
hoping that this will tend to produce smaller clusters. In particular, the number of buckets
we move forward could be found by applying a second hash function to the key. For this to
be guaranteed to work, the size of the hash table should be a prime number, so that stepping
forward many times will bring us back to the original bucket only after we've seen all the other
buckets.

For this question, you are to evaluate how well these schemes work. How well a scheme
works will depend on how often collisions occur, which we can model as a chance process. On
the course web page, you will find R functions that implement a hash table, which you can use.



These functions are summarized below, but see the comments before them for further details.
You will need to write additional R functions that simulate using hash tables, and produce
summaries and plots that indicate how well the schemes work.

The hash.table.setup function initializes the table to have a specified size (the size ar-
gument), and to use a specified scheme for deciding how many buckets to step forward when
a collision occurs (the step argument). If the step argument is one, collisions are resolved by
stepping forward one bucket at a time. If the step argument is greater than one, then a second
hash function applied to the key is used to select how many buckets to step forward by, which
will be between one and the step argument.

The hash.lookup function looks for a key in the table, and optionally adds it to the table
if it is not already present. Keys can be either strings or integers, but must all be either one
or the other for a single table. The hash.lookup function returns a list containing a found
flag, indicating whether or not the key was present, as well as a probes count of the number of
buckets that had to be examined when looking for the key. This count is an indication of how
long the search took.

For your tests, you should set the hash table size to 197. You should compare how well the
scheme works when using step arguments of 1 and 20. For both values of step, you should do
the following 50 times:

1. Initialize the table with size set to 197 and step set to either 1 or 20.

2. Add 160 keys to the table, randomly picking your keys (without replacement) from the
integers from 1 to 1000.

3. Perform 200 lookup operations on the table, looking for keys that are randomly sampled
(with replacement) from the set of integers from 1 to 1000. (So about 16% of these will
be in the table, the rest not.)

4. Record how many probes were needed for each of these lookup operations.

After doing this, you will have 50 x 200 = 10000 numbers giving the number of probes needed
for each of these lookup operations. (These are probably most conveniently stored in a matrix.)
You should now use these numbers to compare how well the hash table works with step set to
1 and to 20. In particular, you should do the following:

1. Plot two histograms of how many probes were needed with step set to 1 and to 20.

2. Estimate the expected number of probes needed with step set to 1 and to 20, using the
sample mean of the data.

3. Estimate the expected number of probes needed for each of the 50 tables constructed,
using the sample means for lookups in each table, and plot two histograms of these means
(one for step set to 1 and one for step set to 20).

4. Estimate the probability that a lookup will require more than 25 probes when step is set
to 1 and to 20.

5. Say whatever you can about how accurate you think the estimates you found above are.

Finally, you should briefly discuss what the above results mean — ie, summarize what you
have learned about the differences with step set to 1 and to 20. You should hand in this
discussion, the plots and estimates above, and a listing of your R program.

A list of some features of R that may be useful will be put on the web page soon.



