
Chapter 5

Discrete Distributions

In this chapter we introduce discrete random variables, those who take values in a finite or
countably infinite support set. We discuss probability mass functions and some special ex-
pectations, namely, the mean, variance and standard deviation. Some of the more important
discrete distributions are explored in detail, and the more general concept of expectation is
defined, which paves the way for moment generating functions.

We give special attention to the empirical distribution since it plays such a fundamental
role with respect to re sampling and Chapter 13; it will also be needed in Section 10.5.1 where
we discuss the Kolmogorov-Smirnov test. Following this is a section in which we introduce a
catalogue of discrete random variables that can be used to model experiments.

There are some comments on simulation, and we mention transformations of random vari-
ables in the discrete case. The interested reader who would like to learn more about any of
the assorted discrete distributions mentioned here should take a look at Univariate Discrete

Distributions by Johnson et al [50].

What do I want them to know?

• how to choose a reasonable discrete model under a variety of physical circumstances

• the notion of mathematical expectation, how to calculate it, and basic properties

• moment generating functions (yes, I want them to hear about those)

• the general tools of the trade for manipulation of continuous random variables, integra-
tion, etc.

• some details on a couple of discrete models, and exposure to a bunch of other ones

• how to make new discrete random variables from old ones

5.1 Discrete Random Variables

5.1.1 Probability Mass Functions

Discrete random variables are characterized by their supports which take the form

S X = {u1, u2, . . . , uk} or S X = {u1, u2, u3 . . .}. (5.1.1)
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Every discrete random variable X has associated with it a probability mass function (PMF)
fX : S X → [0, 1] defined by

fX(x) = IP(X = x), x ∈ S X. (5.1.2)

Since values of the PMF represent probabilities, we know from Chapter 4 that PMFs enjoy
certain properties. In particular, all PMFs satisfy

1. fX(x) > 0 for x ∈ S ,

2.
∑

x∈S fX(x) = 1, and

3. IP(X ∈ A) =
∑

x∈A fX(x), for any event A ⊂ S .

Example 5.1. Toss a coin 3 times. The sample space would be

S = {HHH, HTH, THH, TTH, HHT, HTT, THT, TTT } .

Now let X be the number of Heads observed. Then X has support S X = {0, 1, 2, 3}. Assuming
that the coin is fair and was tossed in exactly the same way each time, it is not unreasonable
to suppose that the outcomes in the sample space are all equally likely. What is the PMF of
X? Notice that X is zero exactly when the outcome TTT occurs, and this event has probability
1/8. Therefore, fX(0) = 1/8, and the same reasoning shows that fX(3) = 1/8. Exactly three
outcomes result in X = 1, thus, fX(1) = 3/8 and fX(3) holds the remaining 3/8 probability (the
total is 1). We can represent the PMF with a table:

x ∈ S X 0 1 2 3 Total
fX(x) = IP(X = x) 1/8 3/8 3/8 1/8 1

5.1.2 Mean, Variance, and Standard Deviation

There are numbers associated with PMFs. One important example is the mean µ, also known
as IE X:

µ = IE X =
∑

x∈S

x fX(x), (5.1.3)

provided the (potentially infinite) series
∑
|x| fX(x) is convergent. Another important number is

the variance:
σ2 = IE(X − µ)2 =

∑

x∈S

(x − µ)2 fX(x), (5.1.4)

which can be computed (see Exercise 5.4) with the alternate formula σ2 = IE X2 − (IE X)2.
Directly defined from the variance is the standard deviation σ =

√
σ2.

Example 5.2. We will calculate the mean of X in Example 5.1.

µ =

3∑

x=0

x fX(x) = 0 ·
1

8
+ 1 ·

3

8
+ 2 ·

3

8
+ 3 ·

1

8
= 3.5.

We interpret µ = 3.5 by reasoning that if we were to repeat the random experiment many times,
independently each time, observe many corresponding outcomes of the random variable X, and
take the sample mean of the observations, then the calculated value would fall close to 3.5. The
approximation would get better as we observe more and more values of X (another form of the
Law of Large Numbers; see Section 4.3). Another way it is commonly stated is that X is 3.5
“on the average” or “in the long run”.

> should be >= and S should be S_X

Delete text from "for" on

3.5 should be 1.5
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Remark 5.3. Note that although we say X is 3.5 on the average, we must keep in mind that our
X never actually equals 3.5 (in fact, it is impossible for X to equal 3.5).

Related to the probability mass function fX(x) = IP(X = x) is another important function
called the cumulative distribution function (CDF), FX. It is defined by the formula

FX(t) = IP(X ≤ t), −∞ < t < ∞. (5.1.5)

We know that all PMFs satisfy certain properties, and a similar statement may be made for
CDFs. In particular, any CDF FX satisfies

• FX is nondecreasing (t1 ≤ t2 implies FX(t1) ≤ FX(t2)).

• FX is right-continuous (limt→a+ FX(t) = FX(a) for all a ∈ R).

• limt→−∞ FX(t) = 0 and limt→∞ FX(t) = 1.

We say that X has the distribution FX and we write X ∼ FX. In an abuse of notation we will
also write X ∼ fX and for the named distributions the PMF or CDF will be identified by the
family name instead of the defining formula.

5.1.3 How to do it with R

The mean and variance of a discrete random variable is easy to compute at the console. Let’s
return to Example 5.2. We will start by defining a vector x containing the support of X, and a
vector f to contain the values of fX at the respective outcomes in x:

> x <- c(0,1,2,3)

> f <- c(1/8, 3/8, 3/8, 1/8)

To calculate the mean µ, we need to multiply the corresponding values of x and f and add
them. This is easily accomplished in R since operations on vectors are performed element-wise
(see Section 2.3.4):

> mu <- sum(x * f)

> mu

[1] 1.5

To compute the variance σ2, we subtract the value of mu from each entry in x, square the
answers, multiply by f, and sum. The standard deviation σ is simply the square root of σ2.

> sigma2 <- sum((x-mu)^2 * f)

> sigma2

[1] 0.75

> sigma <- sqrt(sigma2)

> sigma

[1] 0.8660254

Finally, we may find the values of the CDF FX on the support by accumulating the proba-
bilities in fX with the cumsum function.

Actually, the ~ notation is 

standard only for distributions 

specified by name and parameters
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> F = cumsum(f)

> F

[1] 0.125 0.500 0.875 1.000

As easy as this is, it is even easier to do with the distrEx package [74]. We define a
random variable X as an object, then compute things from the object such as mean, variance,
and standard deviation with the functions E, var, and sd:

> library(distrEx)

> X <- DiscreteDistribution(supp = 0:3, prob = c(1,3,3,1)/8)

> E(X); var(X); sd(X)

[1] 1.5

[1] 0.75

[1] 0.8660254

5.2 The Discrete Uniform Distribution

We have seen the basic building blocks of discrete distributions and we now study particular
models that statisticians often encounter in the field. Perhaps the most fundamental of all is the
discrete uniform distribution.

A random variable X with the discrete uniform distribution on the integers 1, 2, . . . ,m has
PMF

fX(x) =
1

m
, x = 1, 2, . . . ,m. (5.2.1)

We write X ∼ disunif(m). A random experiment where this distribution occurs is the choice
of an integer at random between 1 and 100, inclusive. Let X be the number chosen. Then
X ∼ disunif(m = 100) and

IP(X = x) =
1

100
, x = 1, . . . , 100.

We find a direct formula for the mean of X ∼ disunif(m):

µ =

m∑

x=1

x fX(x) =
m∑

x=1

x ·
1

m
=

1

m
(1 + 2 + · · · + m) =

m + 1

2
, (5.2.2)

where we have used the famous identity 1+ 2+ · · ·+m = m(m+ 1)/2. That is, if we repeatedly
choose integers at random from 1 to m then, on the average, we expect to get (m + 1)/2. To get
the variance we first calculate

IE X2 =
1

m

m∑

x=1

x2 =
1

m

m(m + 1)(2m + 3)

6
=

(m + 1)(2m + 1)

6
,

and finally,

σ2 = IE X2 − (IE X)2 =
(m + 1)(2m + 1)

6
−
(
m + 1

2

)2
= · · · =

m2 − 1
12
. (5.2.3)

Example 5.4. Roll a die and let X be the upward face showing. Then m = 6, µ = 7/2 = 3.5,
and σ2 = (62 − 1)/12 = 35/12.
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5.2.1 How to do it with R

From the console: One can choose an integer at random with the sample function. The gen-
eral syntax to simulate a discrete uniform random variable is sample(x, size, replace
= TRUE).

The argument x identifies the numbers from which to randomly sample. If x is a number,
then sampling is done from 1 to x. The argument size tells how big the sample size should
be, and replace tells whether or not numbers should be replaced in the urn after having been
sampled. The default option is replace = FALSE but for discrete uniforms the sampled values
should be replaced. Some examples follow.

5.2.2 Examples

• To roll a fair die 3000 times, do sample(6, size = 3000, replace = TRUE).

• To choose 27 random numbers from 30 to 70, do sample(30:70, size = 27, replace
= TRUE).

• To flip a fair coin 1000 times, do sample(c("H","T"), size = 1000, replace =
TRUE).

With the R Commander: Follow the sequence Probability " Discrete Distributions " Dis-
crete Uniform distribution " Simulate Discrete uniform variates. . . .

Suppose we would like to roll a fair die 3000 times. In the Number of samples field we
enter 1. Next, we describe what interval of integers to be sampled. Since there are six faces
numbered 1 through 6, we set from = 1, we set to = 6, and set by = 1 (to indicate that we
travel from 1 to 6 in increments of 1 unit). We will generate a list of 3000 numbers selected
from among 1, 2, . . . , 6, and we store the results of the simulation. For the time being, we
select New Data set. Click OK.

Since we are defining a new data set, theRCommander requests a name for the data set. The
default name is Simset1, although in principle you could name it whatever you like (according
to R’s rules for object names). We wish to have a list that is 3000 long, so we set Sample
Size = 3000 and click OK.

In the R Console window, the R Commander should tell you that Simset1 has been initial-
ized, and it should also alert you that There was 1 discrete uniform variate sample
stored in Simset 1.. To take a look at the rolls of the die, we click View data set and a
window opens.

The default name for the variable is disunif.sim1.

5.3 The Binomial Distribution

The binomial distribution is based on a Bernoulli trial, which is a random experiment in which
there are only two possible outcomes: success (S ) and failure (F). We conduct the Bernoulli
trial and let

X =



1 if the outcome is S ,

0 if the outcome is F.
(5.3.1)
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If the probability of success is p then the probability of failure must be 1 − p = q and the PMF
of X is

fX(x) = px(1 − p)1−x, x = 0, 1. (5.3.2)

It is easy to calculate µ = IE X = p and IE X2 = p so that σ2 = p − p2 = p(1 − p).

5.3.1 The Binomial Model

The Binomial model has three defining properties:

• Bernoulli trials are conducted n times,

• the trials are independent,

• the probability of success p does not change between trials.

If X counts the number of successes in the n independent trials, then the PMF of X is

fX(x) =

(
n

x

)
px(1 − p)n−x, x = 0, 1, 2, . . . , n. (5.3.3)

We say that X has a binomial distribution and we write X ∼ binom(size = n, prob = p). It
is clear that fX(x) ≥ 0 for all x in the support because the value is the product of nonnegative
numbers. We next check that

∑
f (x) = 1:

n∑

x=0

(
n

x

)
px(1 − p)n−x = [p + (1 − p)]n = 1n = 1.

We next find the mean:

µ =

n∑

x=0

x

(
n

x

)
px(1 − p)n−x,

=

n∑

x=1

x
n!

x!(n − x)!
pxqn−x,

=n · p
n∑

x=1

(n − 1)!
(x − 1)!(n − x)!

px−1qn−x,

=np

n−1∑

x−1=0

(
n − 1
x − 1

)
p(x−1)(1 − p)(n−1)−(x−1) ,

=np.

A similar argument shows that IE X(X − 1) = n(n − 1)p2 (see Exercise 5.5). Therefore

σ2 = IE X(X − 1) + IE X − [IE X]2,

=n(n − 1)p2 + np − (np)2,

=n2p2 − np2 + np − n2p2,

=np − np2 = np(1 − p).
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Example 5.5. A four-child family. Each child may be either a boy (B) or a girl (G). For sim-
plicity we suppose that IP(B) = IP(G) = 1/2 and that the genders of the children are determined
independently. If we let X count the number of B’s, then X ∼ binom(size = 4, prob = 1/2).
Further, IP(X = 2) is

fX(2) =

(
4

2

)
(1/2)2(1/2)2 =

6

24
.

The mean number of boys is 4(1/2) = 2 and the variance of X is 4(1/2)(1/2) = 1.

5.3.2 How to do it with R

The corresponding R function for the PMF and CDF are dbinom and pbinom, respectively. We
demonstrate their use in the following examples.

Example 5.6. We can calculate it in R Commander under the Binomial Distribution menu with
the Binomial probabilities menu item.

Pr

0 0.0625

1 0.2500

2 0.3750

3 0.2500

4 0.0625

We know that the binom(size = 4, prob = 1/2) distribution is supported on the integers 0,
1, 2, 3, and 4; thus the table is complete. We can read off the answer to be IP(X = 2) = 0.3750.

Example 5.7. Roll 12 dice simultaneously, and let X denote the number of 6’s that appear. We
wish to find the probability of getting seven, eight, or nine 6’s. If we let S =

{
get a 6 on one roll

}
,

then IP(S ) = 1/6 and the rolls constitute Bernoulli trials; thus X ∼ binom(size =12, prob =1/6)
and our task is to find IP(7 ≤ X ≤ 9). This is just

IP(7 ≤ X ≤ 9) =
9∑

x=7

(
12

x

)
(1/6)x(5/6)12−x.

Again, one method to solve this problem would be to generate a probability mass table and add
up the relevant rows. However, an alternative method is to notice that IP(7 ≤ X ≤ 9) = IP(X ≤
9) − IP(X ≤ 6) = FX(9) − FX(6), so we could get the same answer by using the Binomial tail
probabilities. . . menu in the R Commander or the following from the command line:

> pbinom(9, size=12, prob=1/6) - pbinom(6, size=12, prob=1/6)

[1] 0.001291758

> diff(pbinom(c(6,9), size = 12, prob = 1/6)) # same thing

[1] 0.001291758
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Example 5.8. Toss a coin three times and let X be the number of Heads observed. We know
from before that X ∼ binom(size = 3, prob = 1/2) which implies the following PMF:

x = #of Heads 0 1 2 3
f (x) = IP(X = x) 1/8 3/8 3/8 1/8

Our next goal is to write down the CDF of X explicitly. The first case is easy: it is impossible
for X to be negative, so if x < 0 then we should have IP(X ≤ x) = 0. Now choose a value x

satisfying 0 ≤ x < 1, say, x = 0.3. The only way that X ≤ x could happen would be if X = 0,
therefore, IP(X ≤ x) should equal IP(X = 0), and the same is true for any 0 ≤ x < 1. Similarly,
for any 1 ≤ x < 2, say, x = 1.73, the event {X ≤ x} is exactly the event {X = 0 or X = 1}.
Consequently, IP(X ≤ x) should equal IP(X = 0 or X = 1) = IP(X = 0) + IP(X = 1). Continuing
in this fashion, we may figure out the values of FX(x) for all possible inputs −∞ < x < ∞, and
we may summarize our observations with the following piecewise defined function:

FX(x) = IP(X ≤ x) =




0, x < 0,
1
8
, 0 ≤ x < 1,

1
8
+ 3

8
= 4

8
, 1 ≤ x < 2,

4
8
+ 3

8
= 7

8
, 2 ≤ x < 3,

1, x ≥ 3.

In particular, the CDF of X is defined for the entire real line, R. The CDF is right continuous
and nondecreasing. A graph of the binom(size = 3, prob = 1/2) CDF is shown in Figure
5.3.1.

Example 5.9. Another way to do Example 5.8 is with the distr family of packages [74]. They
use an object oriented approach to random variables, that is, a random variable is stored in an
object X, and then questions about the random variable translate to functions on and involving
X. Random variables with distributions from the base package are specified by capitalizing the
name of the distribution.

> library(distr)

> X <- Binom(size = 3, prob = 1/2)

> X

Distribution Object of Class: Binom

size: 3

prob: 0.5

The analogue of the dbinom function for X is the d(X) function, and the analogue of the
pbinom function is the p(X) function. Compare the following:

> d(X)(1) # pmf of X evaluated at x = 1

[1] 0.375

> p(X)(2) # cdf of X evaluated at x = 2

[1] 0.875
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Figure 5.3.1: Graph of the binom(size = 3, prob = 1/2) CDF

Random variables defined via the distr package may be plotted, which will return graphs
of the PMF, CDF, and quantile function (introduced in Section 6.3.1). See Figure 5.3.2 for an
example.
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Given X ∼ dbinom(size = n, prob = p).

How to do: with stats (default) with distr
PMF: IP(X = x) dbinom(x, size = n, prob = p) d(X)(x)
CDF: IP(X ≤ x) pbinom(x, size = n, prob = p) p(X)(x)
Simulate k variates rbinom(k, size = n, prob = p) r(X)(k)

For distr need X <- Binom(size =n, prob =p)

Table 5.1: Correspondence between stats and distr

0.0 1.0 2.0 3.0

0
.0

0
.1

0
.2

0
.3

x

d
(x

)

Probability function of Binom(3, 0.5)

−1 0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q

p
(q

)
CDF of Binom(3, 0.5)

0.0 0.4 0.8

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

p

q
(p

)

Quantile function of Binom(3, 0.5)

Figure 5.3.2: The binom(size = 3, prob = 0.5) distribution from the distr package

5.4 Expectation and Moment Generating Functions

5.4.1 The Expectation Operator

We next generalize some of the concepts from Section 5.1.2. There we saw that every1 PMF
has two important numbers associated with it:

µ =
∑

x∈S

x fX(x), σ
2 =
∑

x∈S

(x − µ)2 fX(x). (5.4.1)

Intuitively, for repeated observations of X we would expect the sample mean to closely approx-
imate µ as the sample size increases without bound. For this reason we call µ the expected

value of X and we write µ = IE X, where IE is an expectation operator.

1Not every, only those PMFs for which the (potentially infinite) series converges.
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Definition 5.10. More generally, given a function g we define the expected value of g(X) by

IE g(X) =
∑

x∈S

g(x) fX(x), (5.4.2)

provided the (potentially infinite) series
∑

x |g(x)| f (x) is convergent. We say that IE g(X) exists.

In this notation the variance is σ2 = IE(X − µ)2 and we prove the identity

IE(X − µ)2 = IE X2 − (IE X)2 (5.4.3)

in Exercise 5.4. Intuitively, for repeated observations of X we would expect the sample mean
of the g(X) values to closely approximate IE g(X) as the sample size increases without bound.

Let us take the analogy further. If we expect g(X) to be close to IE g(X) on the average,
where would we expect 3g(X) to be on the average? It could only be 3 IE g(X). The following
theorem makes this idea precise.

Proposition 5.11. For any functions g and h, any random variable X, and any constant c:

1. IE c = c,

2. IE[c · g(X)] = c IE g(X)

3. IE[g(X) + h(X)] = IE g(X) + IE h(X),

provided IE g(X) and IE h(X) exist.

Proof. Go directly from the definition. For example,

IE[c · g(X)] =
∑

x∈S

c · g(x) fX(x) = c ·
∑

x∈S

g(x) fX(x) = c IE g(X).

!

5.4.2 Moment Generating Functions

Definition 5.12. Given a random variable X, its moment generating function (abbreviated
MGF) is defined by the formula

MX(t) = IE etX =
∑

x∈S

etx fX(x), (5.4.4)

provided the (potentially infinite) series is convergent for all t in a neighborhood of zero (that
is, for all −ε < t < ε, for some ε > 0).

Note that for any MGF MX,

MX(0) = IE e0·X = IE 1 = 1. (5.4.5)

We will calculate the MGF for the two distributions introduced above.

Example 5.13. Find the MGF for X ∼ disunif(m).
Since f (x) = 1/m, the MGF takes the form

M(t) =
m∑

x=1

etx
1

m
=

1

m
(et + e2t + · · · + emt), for any t.

This should be a theorem, 

not a definition
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Example 5.14. Find the MGF for X ∼ binom(size = n, prob = p).

MX(t) =
n∑

x=0

etx
(
n

x

)
px(1 − p)n−x,

=

n−x∑

x=0

(
n

x

)
(pet)xqn−x,

=(pet + q)n, for any t.

Applications

We will discuss three applications of moment generating functions in this book. The first is the
fact that an MGF may be used to accurately identify the probability distribution that generated
it, which rests on the following:

Theorem 5.15. The moment generating function, if it exists in a neighborhood of zero, deter-

mines a probability distribution uniquely.

Proof. Unfortunately, the proof of such a theorem is beyond the scope of a text like this one.
Interested readers could consult Billingsley [8]. !

We will see an example of Theorem 5.15 in action.

Example 5.16. Suppose we encounter a random variable which has MGF

MX(t) = (0.3 + 0.7et)13.

Then X ∼ binom(size = 13, prob = 0.7).

An MGF is also known as a “Laplace Transform” and is manipulated in that context in
many branches of science and engineering.

Why is it called a Moment Generating Function?

This brings us to the second powerful application of MGFs. Many of the models we study
have a simple MGF, indeed, which permits us to determine the mean, variance, and even higher
moments very quickly. Let us see why. We already know that

M(t) =
∑

x∈S

etx f (x).

Take the derivative with respect to t to get

M′(t) =
d

dt



∑

x∈S

etx f (x)


 =
∑

x∈S

d

dt

(
etx f (x)

)
=
∑

x∈S

xetx f (x), (5.4.6)

and so if we plug in zero for t we see

M′(0) =
∑

x∈S

xe0 f (x) =
∑

x∈S

x f (x) = µ = IE X. (5.4.7)
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Similarly, M′′(t) =
∑

x2etx f (x) so that M′′(0) = IE X2. And in general, we can see2 that

M(r)
X (0) = IE Xr = rthmoment of Xabout the origin. (5.4.8)

These are also known as raw moments and are sometimes denoted µ′r. In addition to these are
the so called central moments µr defined by

µr = IE(X − µ)r, r = 1, 2, . . . (5.4.9)

Example 5.17. Let X ∼ binom(size = n, prob = p) with M(t) = (q + pet)n. We calculated
the mean and variance of a binomial random variable in Section 5.3 by means of the binomial
series. But look how quickly we find the mean and variance with the moment generating
function.

M′(t) =n(q + pet)n−1pet |t=0 ,

=n · 1n−1p,
=np.

And

M′′(0) =n(n − 1)[q + pet]n−2(pet)2 + n[q + pet]n−1pet |t=0 ,

IE X2 =n(n − 1)p2 + np.

Therefore

σ2 = IE X2 − (IE X)2,

=n(n − 1)p2 + np − n2p2,

=np − np2 = npq.

See how much easier that was?

Remark 5.18. We learned in this section that M(r)(0) = IE Xr. We remember from Calculus II
that certain functions f can be represented by a Taylor series expansion about a point a, which
takes the form

f (x) =
∞∑

r=0

f (r)(a)

r!
(x − a)r, for all |x − a| < R, (5.4.10)

where R is called the radius of convergence of the series (see Appendix E.3). We combine the
two to say that if an MGF exists for all t in the interval (−ε, ε), then we can write

MX(t) =
∞∑

r=0

IE Xr

r!
tr, for all |t| < ε. (5.4.11)

2We are glossing over some significant mathematical details in our derivation. Suffice it to say that when the
MGF exists in a neighborhood of t = 0, the exchange of differentiation and summation is valid in that neighbor-
hood, and our remarks hold true.
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5.4.3 How to do it with R

The distrEx package provides an expectation operator E which can be used on random vari-
ables that have been defined in the ordinary distr sense:

> X <- Binom(size = 3, prob = 0.45)

> library(distrEx)

> E(X)

[1] 1.35

> E(3 * X + 4)

[1] 8.05

For discrete random variables with finite support, the expectation is simply computed with
direct summation. In the case that the random variable has infinite support and the function is
crazy, then the expectation is not computed directly, rather, it is estimated by first generating a
random sample from the underlying model and next computing a sample mean of the function
of interest.

There are methods for other population parameters:

> var(X)

[1] 0.7425

> sd(X)

[1] 0.8616844

There are even methods for IQR, mad, skewness, and kurtosis.

5.5 The Empirical Distribution

Do an experiment n times and observe n values x1, x2, . . . , xn of a random variable X. For sim-
plicity in most of the discussion that follows it will be convenient to imagine that the observed
values are distinct, but the remarks are valid even when the observed values are repeated.

Definition 5.19. The empirical cumulative distribution function Fn (written ECDF) is the prob-
ability distribution that places probability mass 1/n on each of the values x1, x2, . . . , xn. The
empirical PMF takes the form

fX(x) =
1

n
, x ∈ {x1, x2, ..., xn} . (5.5.1)

If the value xi is repeated k times, the mass at xi is accumulated to k/n.

The mean of the empirical distribution is

µ =
∑

x∈S

x fX(x) =
n∑

i=1

xi ·
1

n
(5.5.2)

and we recognize this last quantity to be the sample mean, x. The variance of the empirical
distribution is

σ2 =
∑

x∈S

(x − µ)2 fX(x) =
n∑

i=1

(xi − x)2 ·
1

n
(5.5.3)
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and this last quantity looks very close to what we already know to be the sample variance.

s2 =
1

n − 1

n∑

i=1

(xi − x)2. (5.5.4)

The empirical quantile function is the inverse of the ECDF. See Section 6.3.1.

5.5.1 How to do it with R

The empirical distribution is not directly available as a distribution in the same way that the
other base probability distributions are, but there are plenty of resources available for the deter-
mined investigator.

Given a data vector of observed values x, we can see the empirical CDF with the ecdf
function:

> x <- c(4, 7, 9, 11, 12)

> ecdf(x)

Empirical CDF

Call: ecdf(x)

x[1:5] = 4, 7, 9, 11, 12

The above shows that the returned value of ecdf(x) is not a number but rather a function.
The ECDF is not usually used by itself in this form, by itself. More commonly it is used as
an intermediate step in a more complicated calculation, for instance, in hypothesis testing (see
Chapter 10) or resampling (see Chapter 13). It is nevertheless instructive to see what the ecdf
looks like, and there is a special plot method for ecdf objects.

> plot(ecdf(x))
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Figure 5.5.1: The empirical CDF

See Figure 5.5.1. The graph is of a right-continuous function with jumps exactly at the
locations stored in x. There are no repeated values in x so all of the jumps are equal to 1/5 =
0.2.

The empirical PDF is not usually of particular interest in itself, but if we really wanted we
could define a function to serve as the empirical PDF:

> epdf <- function(x) function(t){sum(x %in% t)/length(x)}

> x <- c(0,0,1)

> epdf(x)(0) # should be 2/3

[1] 0.6666667

To simulate from the empirical distribution supported on the vector x, we use the sample
function.

> x <- c(0, 0, 1)

> sample(x, size = 7, replace = TRUE)

[1] 0 1 0 1 1 0 0

We can get the empirical quantile function in R with quantile(x, probs = p, type
= 1); see Section 6.3.1.

As we hinted above, the empirical distribution is significant more because of how and where
it appears in more sophisticated applications. We will explore some of these in later chapters –
see, for instance, Chapter 13.
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5.6 Other Discrete Distributions

The binomial and discrete uniform distributions are popular, and rightly so; they are simple and
form the foundation for many other more complicated distributions. But the particular uniform
and binomial models only apply to a limited range of problems. In this section we introduce
situations for which we need more than what the uniform and binomial offer.

5.6.1 Dependent Bernoulli Trials

The Hypergeometric Distribution

Consider an urn with 7 white balls and 5 black balls. Let our random experiment be to randomly
select 4 balls, without replacement, from the urn. Then the probability of observing 3 white
balls (and thus 1 black ball) would be

IP(3W, 1B) =

(
7
3

)(
5
1

)

(
12
4

) . (5.6.1)

More generally, we sample without replacement K times from an urn with M white balls and
N black balls. Let X be the number of white balls in the sample. The PMF of X is

fX(x) =

(
M
x

)(
N

K−x

)

(
M+N
K

) . (5.6.2)

We say that X has a hypergeometric distribution and write X ∼ hyper(m = M, n = N, k = K).
The support set for the hypergeometric distribution is a little bit tricky. It is tempting to say

that x should go from 0 (no white balls in the sample) to K (no black balls in the sample), but
that does not work if K > M, because it is impossible to have more white balls in the sample
than there were white balls originally in the urn. We have the same trouble if K > N. The good
news is that the majority of examples we study have K ≤ M and K ≤ N and we will happily
take the support to be x = 0, 1, . . . , K.

It is shown in Exercise 5.6 that

µ = K
M

M + N
, σ2 = K

MN

(M + N)2
M + N − K

M + N − 1
. (5.6.3)

The associated R functions for the PMF and CDF are dhyper(x, m, n, k) and phyper,
respectively. There are two more functions: qhyper, which we will discuss in Section 6.3.1,
and rhyper, discussed below.

Example 5.20. Suppose in a certain shipment of 250 Pentium processors there are 17 defec-
tive processors. A quality control consultant randomly collects 5 processors for inspection to
determine whether or not they are defective. Let X denote the number of defectives in the
sample.

1. Find the probability of exactly 3 defectives in the sample, that is, find IP(X = 3).

Solution: We know that X ∼ hyper(m = 17, n = 233, k = 5). So the required probability
is just

fX(3) =

(
17
3

)(
233
2

)

(
250
5

) .

To calculate it in R we just type
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> dhyper(3, m = 17, n = 233, k = 5)

[1] 0.002351153

To find it with the R Commander we go Probability " Discrete Distributions " Hyperge-
ometric distribution " Hypergeometric probabilities. . . .We fill in the parametersm = 17,
n = 233, and k = 5. Click OK, and the following table is shown in the window.

> A <- data.frame(Pr = dhyper(0:4, m = 17, n = 233, k = 5))

> rownames(A) <- 0:4

> A

Pr

0 7.011261e-01

1 2.602433e-01

2 3.620776e-02

3 2.351153e-03

4 7.093997e-05

We wanted IP(X = 3), and this is found from the table to be approximately 0.0024. The
value is rounded to the fourth decimal place.

We know from our above discussion that the sample space should be x = 0, 1, 2, 3, 4, 5,
yet, in the table the probabilities are only displayed for x = 1, 2, 3, and 4. What is
happening? As it turns out, the R Commander will only display probabilities that are
0.00005 or greater. Since x = 5 is not shown, it suggests that the outcome has a tiny
probability. To find its exact value we use the dhyper function:

> dhyper(5, m = 17, n = 233, k = 5)

[1] 7.916049e-07

In other words, IP(X = 5) ≈ 0.0000007916049, a small number indeed.

2. Find the probability that there are at most 2 defectives in the sample, that is, compute
IP(X ≤ 2).

Solution: Since IP(X ≤ 2) = IP(X = 0, 1, 2), one way to do this would be to add the 0,
1, and 2 entries in the above table. this gives 0.7011 + 0.2602 + 0.0362 = 0.9975. Our
answer should be correct up to the accuracy of 4 decimal places. However, a more precise
method is provided by the R Commander. Under the Hypergeometric distribution menu
we select Hypergeometric tail probabilities. . . . We fill in the parameters m, n, and k as
before, but in the Variable value(s) dialog box we enter the value 2. We notice that the
Lower tail option is checked, and we leave that alone. Click OK.

> phyper(2, m = 17, n = 233, k = 5)

[1] 0.9975771

And thus IP(X ≤ 2) ≈ 0.9975771. We have confirmed that the above answer was correct
up to four decimal places.
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3. Find IP(X > 1).

The table did not give us the explicit probability IP(X = 5), so we can not use the table to
give us this probability. We need to use another method. Since IP(X > 1) = 1 − IP(X ≤
1) = 1 − FX(1), we can find the probability with Hypergeometric tail probabilities. . . .
We enter 1 for Variable Value(s), we enter the parameters as before, and in this case we
choose the Upper tail option. This results in the following output.

> phyper(1, m = 17, n = 233, k = 5, lower.tail = FALSE)

[1] 0.03863065

In general, the Upper tail option of a tail probabilities dialog computes IP(X > x) for
all given Variable Value(s) x.

4. Generate 100, 000 observations of the random variable X.

We can randomly simulate as many observations of X as we want in R Commander.
Simply choose Simulate hypergeometric variates. . . in the Hypergeometric distribu-
tion dialog.

In the Number of samples dialog, type 1. Enter the parameters as above. Under the
Store Values section, make sure New Data set is selected. Click OK.

A new dialog should open, with the default name Simset1. We could change this if we
like, according to the rules for R object names. In the sample size box, enter 100000.
Click OK.

In the Console Window, R Commander should issue an alert that Simset1 has been
initialized, and in a few seconds, it should also state that 100,000 hypergeometric variates
were stored in hyper.sim1. We can view the sample by clicking the View Data Set
button on the R Commander interface.

We know from our formulas that µ = K ·M/(M +N) = 5 ∗ 17/250 = 0.34. We can check
our formulas using the fact that with repeated observations of X we would expect about
0.34 defectives on the average. To see how our sample reflects the true mean, we can
compute the sample mean

Rcmdr> mean(Simset2$hyper.sim1, na.rm=TRUE)

[1] 0.340344

Rcmdr> sd(Simset2$hyper.sim1, na.rm=TRUE)

[1] 0.5584982

...

We see that when given many independent observations of X, the sample mean is very
close to the true mean µ. We can repeat the same idea and use the sample standard
deviation to estimate the true standard deviation of X. From the output above our estimate
is 0.5584982, and from our formulas we get

σ2 = K
MN

(M + N)2
M + N − K

M + N − 1
≈ 0.3117896,

with σ =
√
σ2 ≈ 0.5583811944. Our estimate was pretty close.

From the console we can generate random hypergeometric variates with the rhyper
function, as demonstrated below.
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> rhyper(10, m = 17, n = 233, k = 5)

[1] 0 0 0 0 0 2 0 0 0 1

Sampling With and Without Replacement

Suppose that we have a large urn with, say, M white balls and N black balls. We take a sample
of size n from the urn, and let X count the number of white balls in the sample. If we sample

without replacement, then X ∼ hyper(m =M, n = N, k = n) and has mean and variance

µ =n
M

M + N
,

σ2 =n
MN

(M + N)2
M + N − n
M + N − 1

,

=n
M

M + N

(
1 −

M

M + N

)
M + N − n
M + N − 1

.

On the other hand, if we sample

with replacement, then X ∼ binom(size = n, prob = M/(M + N)) with mean and variance

µ =n
M

M + N
,

σ2 =n
M

M + N

(
1 −

M

M + N

)
.

We see that both sampling procedures have the same mean, and the method with the larger
variance is the “with replacement” scheme. The factor by which the variances differ,

M + N − n
M + N − 1

, (5.6.4)

is called a finite population correction. For a fixed sample size n, as M,N → ∞ it is clear that
the correction goes to 1, that is, for infinite populations the sampling schemes are essentially
the same with respect to mean and variance.

5.6.2 Waiting Time Distributions

Another important class of problems is associated with the amount of time it takes for a spec-
ified event of interest to occur. For example, we could flip a coin repeatedly until we observe
Heads. We could toss a piece of paper repeatedly until we make it in the trash can.

The Geometric Distribution

Suppose that we conduct Bernoulli trials repeatedly, noting the successes and failures. Let X
be the number of failures before a success. If IP(S ) = p then X has PMF

fX(x) = p(1 − p)x, x = 0, 1, 2, . . . (5.6.5)

(Why?) We say that X has a Geometric distribution and we write X ∼ geom(prob = p).
The associated R functions are dgeom(x, prob), pgeom, qgeom, and rhyper, which give the
PMF, CDF, quantile function, and simulate random variates, respectively. rgeom
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Again it is clear that f (x) ≥ 0 and we check that
∑

f (x) = 1 (see Equation E.3.9 in Ap-
pendix E.3):

∞∑

x=0

p(1 − p)x =p
∞∑

x=0

qx = p
1

1 − q
= 1.

We will find in the next section that the mean and variance are

µ =
1 − p

p
=

q

p
and σ2 =

q

p2
. (5.6.6)

Example 5.21. The Pittsburgh Steelers place kicker, Jeff Reed, made 81.2% of his attempted
field goals in his career up to 2006. Assuming that his successive field goal attempts are ap-
proximately Bernoulli trials, find the probability that Jeffmisses at least 5 field goals before his
first successful goal.

Solution: If X = the number of missed goals until Jeff’s first success, then X ∼ geom(prob =
0.812) and we want IP(X ≥ 5) = IP(X > 4). We can find this in R with

> pgeom(4, prob = 0.812, lower.tail = FALSE)

[1] 0.0002348493

Note 5.22. Some books use a slightly different definition of the geometric distribution. They
consider Bernoulli trials and let Y count instead the number of trials until a success, so that Y
has PMF

fY(y) = p(1 − p)y−1, y = 1, 2, 3, . . . (5.6.7)

When they say “geometric distribution”, this is what they mean. It is not hard to see that the
two definitions are related. In fact, if X denotes our geometric and Y theirs, then Y = X + 1.
Consequently, they have µY = µX + 1 and σ2

Y = σ
2
X.

The Negative Binomial Distribution

We may generalize the problem and consider the case where we wait for more than one suc-
cess. Suppose that we conduct Bernoulli trials repeatedly, noting the respective successes and
failures. Let X count the number of failures before r successes. If IP(S ) = p then X has PMF

fX(x) =

(
r + x − 1
r − 1

)
pr(1 − p)x, x = 0, 1, 2, . . . (5.6.8)

We say that X has a Negative Binomial distribution and write X ∼ nbinom(size = r, prob =

p). The associated R functions are dnbinom(x, size, prob), pnbinom, qnbinom, and
rnbinom, which give the PMF, CDF, quantile function, and simulate random variates, respec-
tively.

As usual it should be clear that fX(x) ≥ 0 and the fact that
∑

fX(x) = 1 follows from a
generalization of the geometric series by means of a Maclaurin’s series expansion:

1

1 − t
=

∞∑

k=0

tk, for −1 < t < 1, and (5.6.9)

1

(1 − t)r
=

∞∑

k=0

(
r + k − 1
r − 1

)
tk, for −1 < t < 1. (5.6.10)
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Therefore
∞∑

x=0

fX(x) = pr
∞∑

x=0

(
r + x − 1
r − 1

)
qx = pr(1 − q)−r = 1, (5.6.11)

since |q| = |1 − p| < 1.

Example 5.23. We flip a coin repeatedly and let X count the number of Tails until we get seven
Heads. What is IP(X = 5)?

Solution: We know that X ∼ nbinom(size = 7, prob = 1/2).

IP(X = 5) = fX(5) =

(
7 + 5 − 1
7 − 1

)
(1/2)7(1/2)5 =

(
11

6

)
2−12

and we can get this in R with

> dnbinom(5, size = 7, prob = 0.5)

[1] 0.1127930

Let us next compute the MGF of X ∼ nbinom(size = r, prob = p).

MX(t) =
∞∑

x=0

etx
(
r + x − 1
r − 1

)
prqx

=pr
∞∑

x=0

(
r + x − 1
r − 1

)
[qet]x

=pr(1 − qet)−r, provided |qet| < 1,

and so

MX(t) =

(
p

1 − qet

)r
, for qet < 1. (5.6.12)

We see that qet < 1 when t < − ln(1 − p).
Let X ∼ nbinom(size = r, prob = p) with M(t) = pr(1 − qet)−r. We proclaimed above the

values of the mean and variance. Now we are equipped with the tools to find these directly.

M′(t) =pr(−r)(1 − qet)−r−1(−qet),

=rqet pr(1 − qet)−r−1,

=
rqet

1 − qet
M(t), and so

M′(0) =
rq

1 − q
· 1 =

rq

p
.

Thus µ = rq/p. We next find IE X2.

M′′(0) =
rqet(1 − qet) − rqet(−qet)

(1 − qet)2
M(t) +

rqet

1 − qet
M′(t)

∣∣∣∣∣
t=0

,

=
rqp + rq2

p2
· 1 +

rq

p

(
rq

p

)
,

=
rq

p2
+

(
rq

p

)2
.

Finally we may say σ2 = M′′(0) − [M′(0)]2 = rq/p2.
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Example 5.24. A random variable has MGF

MX(t) =

(
0.19

1 − 0.81et

)31
.

Then X ∼ nbinom(size = 31, prob = 0.19).

Note 5.25. As with the Geometric distribution, some books use a slightly different definition of
the Negative Binomial distribution. They consider Bernoulli trials and let Y be the number of
trials until r successes, so that Y has PMF

fY(y) =

(
y − 1
r − 1

)
pr(1 − p)y−r, y = r, r + 1, r + 2, . . . (5.6.13)

It is again not hard to see that if X denotes our Negative Binomial and Y theirs, then Y = X + r.
Consequently, they have µY = µX + r and σ

2
Y = σ

2
X.

5.6.3 Arrival Processes

The Poisson Distribution

This is a distribution associated with “rare events”, for reasons which will become clear in a
moment. The events might be:

• traffic accidents,

• typing errors, or

• customers arriving in a bank.

Let λ be the average number of events in the time interval [0, 1]. Let the random variable X

count the number of events occurring in the interval. Then under certain reasonable conditions
it can be shown that

fX(x) = IP(X = x) = e−λ
λx

x!
, x = 0, 1, 2, . . . (5.6.14)

We use the notation X ∼ pois(lambda = λ). The associated R functions are dpois(x,
lambda), ppois, qpois, and rpois, which give the PMF, CDF, quantile function, and simu-
late random variates, respectively.

What are the reasonable conditions? Divide [0, 1] into subintervals of length 1/n. A Pois-

son process satisfies the following conditions:

• the probability of an event occurring in a particular subinterval is ≈ λ/n.

• the probability of two or more events occurring in any subinterval is ≈ 0.

• occurrences in disjoint subintervals are independent.

Remark 5.26. If X counts the number of events in the interval [0, t] and λ is the average number
that occur in unit time, then X ∼ pois(lambda = λt), that is,

IP(X = x) = e−λt
(λt)x

x!
, x = 0, 1, 2, 3 . . . (5.6.15)
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Example 5.27. On the average, five cars arrive at a particular car wash every hour. Let X count
the number of cars that arrive from 10AM to 11AM. Then X ∼ pois(lambda = 5). Also,
µ = σ2 = 5. What is the probability that no car arrives during this period?

Solution: The probability that no car arrives is

IP(X = 0) = e−5
50

0!
= e−5 ≈ 0.0067.

Example 5.28. Suppose the car wash above is in operation from 8AM to 6PM, and we let Y be
the number of customers that appear in this period. Since this period covers a total of 10 hours,
from Remark 5.26 we get that Y ∼ pois(lambda = 5 ∗ 10 = 50). What is the probability that
there are between 48 and 50 customers, inclusive?

Solution: We want IP(48 ≤ Y ≤ 50) = IP(X ≤ 50) − IP(X ≤ 47).

> diff(ppois(c(47, 50), lambda = 50))

[1] 0.1678485

5.7 Functions of Discrete Random Variables

We have built a large catalogue of discrete distributions, but the tools of this section will give
us the ability to consider infinitely many more. Given a random variable X and a given function
h, we may consider Y = h(X). Since the values of X are determined by chance, so are the
values of Y . The question is, what is the PMF of the random variable Y? The answer, of course,
depends on h. In the case that h is one-to-one (see Appendix E.2), the solution can be found by
simple substitution.

Example 5.29. Let X ∼ nbinom(size = r, prob = p). We saw in 5.6 that X represents the
number of failures until r successes in a sequence of Bernoulli trials. Suppose now that instead
we were interested in counting the number of trials (successes and failures) until the rth success
occurs, which we will denote by Y . In a given performance of the experiment, the number of
failures (X) and the number of successes (r) together will comprise the total number of trials
(Y), or in other words, X+ r = Y . We may let h be defined by h(x) = x+ r so that Y = h(X), and
we notice that h is linear and hence one-to-one. Finally, X takes values 0, 1, 2, . . . implying
that the support of Y would be {r, r + 1, r + 2, . . .}. Solving for X we get X = Y − r. Examining
the PMF of X

fX(x) =

(
r + x − 1
r − 1

)
pr(1 − p)x, (5.7.1)

we can substitute x = y − r to get

fY(y) = fX(y − r),

=

(
r + (y − r) − 1

r − 1

)
pr(1 − p)y−r,

=

(
y − 1
r − 1

)
pr(1 − p)y−r, y = r, r + 1, . . .

Even when the function h is not one-to-one, we may still find the PMF of Y simply by
accumulating, for each y, the probability of all the x’s that are mapped to that y.
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Proposition 5.30. Let X be a discrete random variable with PMF fX supported on the set S X.

Let Y = h(X) for some function h. Then Y has PMF fY defined by

fY(y) =
∑

{x∈S X | h(x)=y}

fX(x) (5.7.2)

Example 5.31. Let X ∼ binom(size = 4, prob = 1/2), and let Y = (X − 1)2. Consider the
following table:

x 0 1 2 3 4
fX(x) 1/16 1/4 6/16 1/4 1/16

y = (x − 2)2 1 0 1 4 9

From this we see that Y has support S Y = {0, 1, 4, 9}. We also see that h(x) = (x − 1)2 is
not one-to-one on the support of X, because both x = 0 and x = 2 are mapped by h to y = 1.
Nevertheless, we see that Y = 0 only when X = 1, which has probability 1/4; therefore, fY(0)
should equal 1/4. A similar approach works for y = 4 and y = 9. And Y = 1 exactly when
X = 0 or X = 2, which has total probability 7/16. In summary, the PMF of Y may be written:

y 0 1 4 9
fX(x) 1/4 7/16 1/4 1/16

Note that there is not a special name for the distribution of Y , it is just an example of what
to do when the transformation of a random variable is not one-to-one. The method is the same
for more complicated problems.

Proposition 5.32. If X is a random variable with IE X = µ and Var(X) = σ2, then the mean

and variance of Y = mX + b is

µY = mµ + b, σ2
Y = m2σ2, σY = |m|σ. (5.7.3)
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Chapter Exercises

Exercise 5.1. A recent national study showed that approximately 44.7% of college students
have used Wikipedia as a source in at least one of their term papers. Let X equal the number of
students in a random sample of size n = 31 who have used Wikipedia as a source.

1. How is X distributed?

X ∼ binom(size = 31, prob = 0.447)

2. Sketch the probability mass function (roughly).
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3. Sketch the cumulative distribution function (roughly).
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4. Find the probability that X is equal to 17.

> dbinom(17, size = 31, prob = 0.447)

[1] 0.07532248

5. Find the probability that X is at most 13.

> pbinom(13, size = 31, prob = 0.447)

[1] 0.451357

6. Find the probability that X is bigger than 11.

> pbinom(11, size = 31, prob = 0.447, lower.tail = FALSE)

[1] 0.8020339

7. Find the probability that X is at least 15.

> pbinom(14, size = 31, prob = 0.447, lower.tail = FALSE)

[1] 0.406024

8. Find the probability that X is between 16 and 19, inclusive.

> sum(dbinom(16:19, size = 31, prob = 0.447))

[1] 0.2544758

> diff(pbinom(c(19, 15), size = 31, prob = 0.447, lower.tail = FALSE))

[1] 0.2544758

9. Give the mean of X, denoted IE X.

> library(distrEx)

> X = Binom(size = 31, prob = 0.447)

> E(X)

[1] 13.857

10. Give the variance of X.

> var(X)

[1] 7.662921
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11. Give the standard deviation of X.

> sd(X)

[1] 2.768198

12. Find IE(4X + 51.324)

> E(4 * X + 51.324)

[1] 106.752

Exercise 5.2. For the following situations, decide what the distribution of X should be. In
nearly every case, there are additional assumptions that should be made for the distribution to
apply; identify those assumptions (which may or may not hold in practice.)

1. We shoot basketballs at a basketball hoop, and count the number of shots until we make
a goal. Let X denote the number of missed shots. On a normal day we would typically
make about 37% of the shots.

2. In a local lottery in which a three digit number is selected randomly, let X be the number
selected.

3. We drop a Styrofoam cup to the floor twenty times, each time recording whether the cup
comes to rest perfectly right side up, or not. Let X be the number of times the cup lands
perfectly right side up.

4. We toss a piece of trash at the garbage can from across the room. If we miss the trash
can, we retrieve the trash and try again, continuing to toss until we make the shot. Let X
denote the number of missed shots.

5. Working for the border patrol, we inspect shipping cargo as when it enters the harbor
looking for contraband. A certain ship comes to port with 557 cargo containers. Stan-
dard practice is to select 10 containers randomly and inspect each one very carefully,
classifying it as either having contraband or not. Let X count the number of containers
that illegally contain contraband.

6. At the same time every year, some migratory birds land in a bush outside for a short rest.
On a certain day, we look outside and let X denote the number of birds in the bush.

7. We count the number of rain drops that fall in a circular area on a sidewalk during a ten
minute period of a thunder storm.

8. We count the number of moth eggs on our window screen.

9. We count the number of blades of grass in a one square foot patch of land.

10. We count the number of pats on a baby’s back until (s)he burps.

Exercise 5.3. Find the constant c so that the given function is a valid PDF of a random variable
X.
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1. f (x) = Cxn, 0 < x < 1.

2. f (x) = Cxe−x, 0 < x < ∞.

3. f (x) = e−(x−C), 7 < x < ∞.

4. f (x) = Cx3(1 − x)2, 0 < x < 1.

5. f (x) = C(1 + x2/4)−1, −∞ < x < ∞.

Exercise 5.4. Show that IE(X − µ)2 = IE X2 − µ2. Hint: expand the quantity (X − µ)2 and
distribute the expectation over the resulting terms.

Exercise 5.5. If X ∼ binom(size = n, prob = p) show that IE X(X − 1) = n(n − 1)p2.

Exercise 5.6. Calculate the mean and variance of the hypergeometric distribution. Show that

µ = K
M

M + N
, σ2 = K

MN

(M + N)2
M + N − K

M + N − 1
. (5.7.4)


