
Chapter 6

Continuous Distributions

The focus of the last chapter was on random variables whose support can be written down in
a list of values (finite or countably infinite), such as the number of successes in a sequence of
Bernoulli trials. Now we move to random variables whose support is a whole range of values,
say, an interval (a, b). It is shown in later classes that it is impossible to write all of the numbers
down in a list; there are simply too many of them.

This chapter begins with continuous random variables and the associated PDFs and CDFs
The continuous uniform distribution is highlighted, along with the Gaussian, or normal, distri-
bution. Some mathematical details pave the way for a catalogue of models.

The interested reader who would like to learn more about any of the assorted discrete distri-
butions mentioned below should take a look at Continuous Univariate Distributions, Volumes
1 and 2 by Johnson et al [47, 48].

What do I want them to know?

• how to choose a reasonable continuous model under a variety of physical circumstances

• basic correspondence between continuous versus discrete random variables

• the general tools of the trade for manipulation of continuous random variables, integra-
tion, etc.

• some details on a couple of continuous models, and exposure to a bunch of other ones

• how to make new continuous random variables from old ones

6.1 Continuous Random Variables

6.1.1 Probability Density Functions

Continuous random variables have supports that look like

S X = [a, b] or (a, b), (6.1.1)

or unions of intervals of the above form. Examples of random variables that are often taken to
be continuous are:

• the height or weight of an individual,
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138 CHAPTER 6. CONTINUOUS DISTRIBUTIONS

• other physical measurements such as the length or size of an object, and

• durations of time (usually).

Every continuous random variable X has a probability density function (PDF) denoted fX asso-
ciated with it1 that satisfies three basic properties:

1. fX(x) > 0 for x ∈ S X,

2.
∫
x∈S X

fX(x) dx = 1, and

3. IP(X ∈ A) =
∫
x∈A

fX(x) dx, for an event A ⊂ S X.

Remark 6.1. We can say the following about continuous random variables:

• Usually, the set A in 3 takes the form of an interval, for example, A = [c, d], in which
case

IP(X ∈ A) =
∫ d

c

fX(x) dx. (6.1.2)

• It follows that the probability that X falls in a given interval is simply the area under the

curve of fX over the interval.

• Since the area of a line x = c in the plane is zero, IP(X = c) = 0 for any value c. In
other words, the chance that X equals a particular value c is zero, and this is true for any
number c. Moreover, when a < b all of the following probabilities are the same:

IP(a ≤ X ≤ b) = IP(a < X ≤ b) = IP(a ≤ X < b) = IP(a < X < b). (6.1.3)

• The PDF fX can sometimes be greater than 1. This is in contrast to the discrete case;
every nonzero value of a PMF is a probability which is restricted to lie in the interval
[0, 1].

We met the cumulative distribution function, FX, in Chapter 5. Recall that it is defined by
FX(t) = IP(X ≤ t), for −∞ < t < ∞. While in the discrete case the CDF is unwieldy, in the
continuous case the CDF has a relatively convenient form:

FX(t) = IP(X ≤ t) =

∫ t

−∞
fX(x) dx, −∞ < t < ∞. (6.1.4)

Remark 6.2. For any continuous CDF FX the following are true.

• FX is nondecreasing , that is, t1 ≤ t2 implies FX(t1) ≤ FX(t2).

• FX is continuous (see Appendix E.2). Note the distinction from the discrete case: CDFs
of discrete random variables are not continuous, they are only right continuous.

• limt→−∞ FX(t) = 0 and limt→∞ FX(t) = 1.

There is a handy relationship between the CDF and PDF in the continuous case. Consider
the derivative of FX:

F′X(t) =
d

dt
FX(t) =

d

dt

∫ t

−∞
fX(x) dx = fX(t), (6.1.5)

the last equality being true by the Fundamental Theorem of Calculus, part (2) (see Appendix
E.2). In short, (FX)

′ = fX in the continuous case2.

1Not true. There are pathological random variables with no density function. (This is one of the crazy things
that can happen in the world of measure theory). But in this book we will not get even close to these anomalous
beasts, and regardless it can be proved that the CDF always exists.

2In the discrete case, fX(x) = FX(x) − limt→x− FX(t).
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6.1.2 Expectation of Continuous Random Variables

For a continuous random variable X the expected value of g(X) is

IE g(X) =

∫

x∈S
g(x) fX(x) dx, (6.1.6)

provided the (potentially improper) integral
∫
S
|g(x)| f (x)dx is convergent. One important ex-

ample is the mean µ, also known as IE X:

µ = IE X =

∫

x∈S
x fX(x) dx, (6.1.7)

provided
∫
S
|x| f (x)dx is finite. Also there is the variance

σ2 = IE(X − µ)2 =
∫

x∈S
(x − µ)2 fX(x) dx, (6.1.8)

which can be computed with the alternate formula σ2 = IE X2 − (IE X)2. In addition, there is
the standard deviation σ =

√
σ2. The moment generating function is given by

MX(t) = IE etX =

∫ ∞

−∞
etx fX(x) dx, (6.1.9)

provided the integral exists (is finite) for all t in a neighborhood of t = 0.

Example 6.3. Let the continuous random variable X have PDF

fX(x) = 3x2, 0 ≤ x ≤ 1.

We will see later that fX belongs to the Beta family of distributions. It is easy to see that∫ ∞
−∞

f (x)dx = 1.
∫ ∞

−∞
fX(x)dx =

∫ 1

0

3x2 dx

= x3
∣∣∣1
x=0

= 13 − 03

= 1.

This being said, we may find IP(0.14 ≤ X < 0.71).

IP(0.14 ≤ X < 0.71) =

∫ 0.71

0.14

3x2dx,

= x3
∣∣∣0.71
x=0.14

= 0.713 − 0.143

≈ 0.355167.

We can find the mean and variance in an identical manner.

µ =

∫ ∞

−∞
x fX(x)dx =

∫ 1

0

x · 3x2 dx,

=
3

4
x4|1x=0,

=
3

4
.

It would perhaps be best to calculate the variance with the shortcut formula σ2 = IE X2 − µ2:
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IE X2 =

∫ ∞

−∞
x2 fX(x)dx =

∫ 1

0

x2 · 3x2 dx

=
3

5
x5
∣∣∣∣∣
1

x=0

= 3/5.

which gives σ2 = 3/5 − (3/4)2 = 3/80.

Example 6.4. We will try one with unbounded support to brush up on improper integration.
Let the random variable X have PDF

fX(x) =
3

x4
, x > 1.

We can show that
∫ ∞
−∞

f (x)dx = 1:

∫ ∞

−∞
fX(x)dx =

∫ ∞

1

3

x4
dx

= lim
t→∞

∫ t

1

3

x4
dx

= lim
t→∞

3
1

−3
x−3
∣∣∣∣∣
t

x=1

= −
(
lim
t→∞

1

t3
− 1
)

= 1.

We calculate IP(3.4 ≤ X < 7.1):

IP(3.4 ≤ X < 7.1) =

∫ 7.1

3.4

3x−4dx

= 3
1

−3
x−3
∣∣∣∣∣
7.1

x=3.4

= −1(7.1−3 − 3.4−3)
≈ 0.0226487123.

We locate the mean and variance just like before.

µ =

∫ ∞

−∞
x fX(x)dx =

∫ ∞

1

x ·
3

x4
dx

= 3
1

−2
x−2
∣∣∣∣∣
∞

x=1

= −
3

2

(
lim
t→∞

1

t2
− 1
)

=
3

2
.

assumed to be 0 for x < 1
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Again we use the shortcut σ2 = IE X2 − µ2:

IE X2 =

∫ ∞

−∞
x2 fX(x)dx =

∫ ∞

1

x2 ·
3

x4
dx

= 3
1

−1
x−1
∣∣∣∣∣
∞

x=1

= −3
(
lim
t→∞

1

t2
− 1
)

= 3,

which closes the example with σ2 = 3 − (3/2)2 = 3/4.

6.1.3 How to do it with R

There exist utilities to calculate probabilities and expectations for general continuous random
variables, but it is better to find a built-in model, if possible. Sometimes it is not possible. We
show how to do it the long way, and the distr package way.

Example 6.5. Let X have PDF f (x) = 3x2, 0 < x < 1 and find IP(0.14 ≤ X ≤ 0.71). (We will
ignore that X is a beta random variable for the sake of argument.)

> f <- function(x) 3 * x^2

> integrate(f, lower = 0.14, upper = 0.71)

0.355167 with absolute error < 3.9e-15

Compare this to the answer we found in Example 6.3. We could integrate the function
x f (x) = 3*x^3 from zero to one to get the mean, and use the shortcut σ2 = IE X2 − (IE X)2 for
the variance.

Example 6.6. Let X have PDF f (x) = 3/x4, x > 1. We may integrate the function x f (x) =
3/x^3 from zero to infinity to get the mean of X.

> g <- function(x) 3/x^3

> integrate(g, lower = 1, upper = Inf)

1.5 with absolute error < 1.7e-14

Compare this to the answer we got in Example 6.4. Use -Inf for −∞.

Example 6.7. Let us redo Example 6.3 with the distr package. The method is similar to
that encountered in Section 5.1.3 in Chapter 5. We define an absolutely continuous random
variable:

> library(distr)

> f <- function(x) 3 * x^2

> X <- AbscontDistribution(d = f, low1 = 0, up1 = 1)

> p(X)(0.71) - p(X)(0.14)

[1] 0.355167

one
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Compare this answers we found earlier. Now let us try expectation with the distrEx
package [74]:

> library(distrEx)

> E(X)

[1] 0.7496337

> var(X)

[1] 0.03768305

> 3/80

[1] 0.0375

Compare these answers to the ones we found in Example 6.3. Why are they different?
Because the distrEx package resorts to numerical methods when it encounters a model it
does not recognize. This means that the answers we get for calculations may not exactly match
the theoretical values. Be careful.

6.2 The Continuous Uniform Distribution

A random variable X with the continuous uniform distribution on the interval (a, b) has PDF

fX(x) =
1

b − a
, a < x < b. (6.2.1)

The associated R function is dunif(min = a, max = b). We write X ∼ unif(min = a, max = b).
Due to the particularly simple form of this PDF we can also write down explicitly a formula
for the CDF FX:

FX(t) =




0, t < 0,
t−a
b−a , a ≤ t < b,

1, t ≥ b.

(6.2.2)

The continuous uniform distribution is the continuous analogue of the discrete uniform dis-
tribution; it is used to model experiments whose outcome is an interval of numbers that are
“equally likely” in the sense that any two intervals of equal length in the support have the same
probability associated with them.

Example 6.8. Choose a number in [0,1] at random, and let X be the number chosen. Then
X ∼ unif(min = 0, max = 1).

The mean of X ∼ unif(min = a, max = b) is relatively simple to calculate:

µ = IE X =

∫ ∞

−∞
x fX(x) dx,

=

∫ b

a

x
1

b − a
dx,

=
1

b − a
x2

2

∣∣∣∣∣∣

b

x=a

,

=
1

b − a
b2 − a2

2
,

=
b + a

2
,
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using the popular formula for the difference of squares. The variance is left to Exercise 6.4.

6.3 The Normal Distribution

We say that X has a normal distribution if it has PDF

fX(x) =
1

σ
√
2π

exp

{
−(x − µ)2

2σ2

}
, −∞ < x < ∞. (6.3.1)

We write X ∼ norm(mean = µ, sd = σ), and the associated R function is dnorm(x, mean =
0, sd = 1).

The familiar bell-shaped curve, the normal distribution is also known as theGaussian distri-
bution because the German mathematician C. F. Gauss largely contributed to its mathematical
development. This distribution is by far the most important distribution, continuous or discrete.
The normal model appears in the theory of all sorts of natural phenomena, from to the way
particles of smoke dissipate in a closed room, to the journey of a bottle in the ocean to the
white noise of cosmic background radiation.

When µ = 0 and σ = 1 we say that the random variable has a standard normal distribution
and we typically write Z ∼ norm(mean = 0, sd = 1). The lowercase Greek letter phi (φ) is
used to denote the standard normal PDF and the capital Greek letter phi Φ is used to denote the
standard normal CDF: for −∞ < z < ∞,

φ(z) =
1
√
2π

e−z
2/2 and Φ(t) =

∫ t

−∞
φ(z) dz. (6.3.2)

Proposition 6.9. If X ∼ norm(mean = µ, sd = σ) then

Z =
X − µ
σ
∼ norm(mean = 0, sd = 1). (6.3.3)

The MGF of Z ∼ norm(mean = 0, sd = 1) is relatively easy to derive:

MZ(t) =

∫ ∞

−∞
etz

1
√
2π

e−z
2/2dz,

=

∫ ∞

−∞

1
√
2π

exp

{
−
1

2

(
z2 + 2tz + t2

)
+
t2

2

}
dz,

= et
2/2

(∫ ∞

−∞

1
√
2π

e−[z−(−t)]
2/2dz

)
,

and the quantity in the parentheses is the total area under a norm(mean = −t, sd = 1) density,
which is one. Therefore,

MZ(t) = e−t
2/2, −∞ < t < ∞. (6.3.4)

Example 6.10. The MGF of X ∼ norm(mean = µ, sd = σ) is then not difficult either because

Z =
X − µ
σ
, or rewriting, X = σZ + µ.

Therefore:
MX(t) = IE etX = IE et(σZ+µ) = IE eσtXeµ = etµMZ(σt),

and we know that MZ(t) = et
2/2, thus substituting we get

MX(t) = etµe(σt)
2/2 = exp

{
µt + σ2t2/2

}
,

for −∞ < t < ∞.
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Fact 6.11. The same argument above shows that if X has MGF MX(t) then the MGF of Y =

a + bX is

MY (t) = etaMX(bt). (6.3.5)

Example 6.12. The 68-95-99.7 Rule. We saw in Section 3.3.6 that when an empirical distribu-
tion is approximately bell shaped there are specific proportions of the observations which fall
at varying distances from the (sample) mean. We can see where these come from – and obtain
more precise proportions – with the following:

> pnorm(1:3) - pnorm(-(1:3))

[1] 0.6826895 0.9544997 0.9973002

Example 6.13. Let the random experiment consist of a person taking an IQ test, and let X be
the score on the test. The scores on such a test are typically standardized to have a mean of 100
and a standard deviation of 15. What is IP(85 ≤ X ≤ 115)?

Solution: this one is easy because the limits 85 and 115 fall exactly one standard deviation
(below and above, respectively) from the mean of 100. The answer is therefore approximately
68%.

6.3.1 Normal Quantiles and the Quantile Function

Until now we have been given two values and our task has been to find the area under the PDF
between those values. In this section, we go in reverse: we are given an area, and we would
like to find the value(s) that correspond to that area.

Example 6.14. Assuming the IQ model of Example 6.13, what is the lowest possible IQ score
that a person can have and still be in the top 1% of all IQ scores?

Solution: If a person is in the top 1%, then that means that 99% of the people have lower
IQ scores. So, in other words, we are looking for a value x such that F(x) = IP(X ≤ x)
satisfies F(x) = 0.99, or yet another way to say it is that we would like to solve the equation
F(x)−0.99 = 0. For the sake of argument, let us see how to do this the long way. We define the
function g(x) = F(x) − 0.99, and then look for the root of g with the uniroot function. It uses
numerical procedures to find the root so we need to give it an interval of x values in which to
search for the root. We can get an educated guess from the Empirical Rule 3.13; the root should
be somewhere between two and three standard deviations (15 each) above the mean (which is
100).

> g <- function(x) pnorm(x, mean = 100, sd = 15) - 0.99

> uniroot(g, interval = c(130, 145))

$root

[1] 134.8952

$f.root

[1] -4.873083e-09

$iter

[1] 6

$estim.prec

[1] 6.103516e-05
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The answer is shown in $root which is approximately 134.8952, that is, a person with this
IQ score or higher falls in the top 1% of all IQ scores.

The discussion in example 6.14 was centered on the search for a value x that solved an
equation F(x) = p, for some given probability p, or in mathematical parlance, the search for
F−1, the inverse of the CDF of X, evaluated at p. This is so important that it merits a definition
all its own.

Definition 6.15. The quantile function3 of a random variable X is the inverse of its cumulative
distribution function:

QX(p) = min {x : FX(x) ≥ p} , 0 < p < 1. (6.3.6)

Remark 6.16. Here are some properties of quantile functions:

1. The quantile function is defined and finite for all 0 < p < 1.

2. QX is left-continuous (see Appendix E.2). For discrete random variables it is a step
function, and for continuous random variables it is a continuous function.

3. In the continuous case the graph of QX may be obtained by reflecting the graph of FX

about the line y = x. In the discrete case, before reflecting one should: 1) connect the
dots to get rid of the jumps – this will make the graph look like a set of stairs, 2) erase
the horizontal lines so that only vertical lines remain, and finally 3) swap the open circles
with the solid dots. Please see Figure 5.3.2 for a comparison.

4. The two limits
lim
p→0+

QX(p) and lim
p→1−

QX(p)

always exist, but may be infinite (that is, sometimes limp→0 Q(p) = −∞ and/or limp→1 Q(p) =
∞).

As the reader might expect, the standard normal distribution is a very special case and has
its own special notation.

Definition 6.17. For 0 < α < 1, the symbol zα denotes the unique solution of the equation
IP(Z > zα) = α, where Z ∼ norm(mean = 0, sd = 1). It can be calculated in one of two
equivalent ways: qnorm(1 − α) and qnorm(α, lower.tail = FALSE).

There are a few other very important special cases which we will encounter in later chapters.

6.3.2 How to do it with R

Quantile functions are defined for all of the base distributions with the q prefix to the distribu-
tion name, except for the ECDF whose quantile function is exactly the Qx(p) =quantile(x,
probs = p , type = 1) function.

Example 6.18. Back to Example 6.14, we are looking for QX(0.99), where X ∼ norm(mean =
100, sd = 15). It could not be easier to do with R.

> qnorm(0.99, mean = 100, sd = 15)

3The precise definition of the quantile function is QX(p) = inf {x : FX(x) ≥ p}, so at least it is well defined
(though perhaps infinite) for the values p = 0 and p = 1.
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[1] 134.8952

Compare this answer to the one obtained earlier with uniroot.

Example 6.19. Find the values z0.025, z0.01, and z0.005 (these will play an important role from
Chapter 9 onward).

> qnorm(c(0.025, 0.01, 0.005), lower.tail = FALSE)

[1] 1.959964 2.326348 2.575829

Note the lower.tail argument. We would get the same answer with

qnorm(c(0.975, 0.99, 0.995))

6.4 Functions of Continuous Random Variables

The goal of this section is to determine the distribution of U = g(X) based on the distribution
of X. In the discrete case all we needed to do was back substitute for x = g−1(u) in the PMF of
X (sometimes accumulating probability mass along the way). In the continuous case, however,
we need more sophisticated tools. Now would be a good time to review Appendix E.2.

6.4.1 The PDF Method

Proposition 6.20. Let X have PDF fX and let g be a function which is one-to-one with a

differentiable inverse g−1. Then the PDF of U = g(X) is given by

fU(u) = fX
[
g−1(u)

] ∣∣∣∣∣
d

du
g−1(u)

∣∣∣∣∣ . (6.4.1)

Remark 6.21. The formula in Equation 6.4.1 is nice, but does not really make any sense. It is
better to write in the intuitive form

fU(u) = fX(x)

∣∣∣∣∣
dx

du

∣∣∣∣∣ . (6.4.2)

Example 6.22. Let X ∼ norm(mean = µ, sd = σ), and let Y = eX. What is the PDF of Y?
Solution: Notice first that ex > 0 for any x, so the support of Y is (0,∞). Since the transfor-

mation is monotone, we can solve y = ex for x to get x = ln y, giving dx/dy = 1/y. Therefore,
for any y > 0,

fY(y) = fX(ln y) ·
∣∣∣∣∣
1

y

∣∣∣∣∣ =
1

σ
√
2π

exp

{
(ln y − µ)2

2σ2

}
·
1

y
,

where we have dropped the absolute value bars since y > 0. The random variable Y is said to
have a lognormal distribution; see Section 6.5.

Example 6.23. Suppose X ∼ norm(mean = 0, sd = 1) and let Y = 4− 3X. What is the PDF of
Y?
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The support of X is (−∞,∞), and as x goes from −∞ to ∞, the quantity y = 4 − 3x also
traverses (−∞,∞). Solving for x in the equation y = 4 − 3x yields x = −(y − 4)/3 giving
dx/dy = −1/3. And since

fX(x) =
1
√
2π

e−x
2/2, −∞ < x < ∞,

we have

fY(y) = fX

(
y − 4
3

)
·
∣∣∣∣∣−
1

3

∣∣∣∣∣ , −∞ < y < ∞,

=
1

3
√
2π

e−(y−4)
2/2·32 , −∞ < y < ∞.

We recognize the PDF of Y to be that of a norm(mean = 4, sd = 3) distribution. Indeed, we
may use an identical argument as the above to prove the following fact:

Fact 6.24. If X ∼ norm(mean = µ, sd = σ) and if Y = a + bX for constants a and b, with

b ! 0, then Y ∼ norm(mean = a + bµ, sd = |b|σ).

Note that it is sometimes easier to postpone solving for the inverse transformation x = x(u).
Instead, leave the transformation in the form u = u(x) and calculate the derivative of the original
transformation

du/dx = g′(x). (6.4.3)

Once this is known, we can get the PDF of U with

fU(u) = fX(x)

∣∣∣∣∣
1

du/dx

∣∣∣∣∣ . (6.4.4)

In many cases there are cancellations and the work is shorter. Of course, it is not always true
that

dx

du
=

1

du/dx
, (6.4.5)

but for the well-behaved examples in this book the trick works just fine.

Remark 6.25. In the case that g is not monotone we cannot apply Proposition 6.20 directly.
However, hope is not lost. Rather, we break the support of X into pieces such that g is monotone
on each one. We apply Proposition 6.20 on each piece, and finish up by adding the results
together.

6.4.2 The CDF method

We know from Section 6.1 that fX = F′X in the continuous case. Starting from the equation
FY(y) = IP(Y ≤ y), we may substitute g(X) for Y , then solve for X to obtain IP[X ≤ g−1(y)],
which is just another way to write FX[g

−1(y)]. Differentiating this last quantity with respect to
y will yield the PDF of Y .

Example 6.26. Suppose X ∼ unif(min = 0, max = 1) and suppose that we let Y = − ln X.
What is the PDF of Y?

The support set of X is (0, 1), and y traverses (0,∞) as x ranges from 0 to 1, so the support
set of Y is S Y = (0,∞). For any y > 0, we consider

FY(y) = IP(Y ≤ y) = IP(− ln X ≤ y) = IP(X ≥ e−y) = 1 − IP(X < e−y),
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where the next to last equality follows because the exponential function is monotone (this point
will be revisited later). Now since X is continuous the two probabilities IP(X < e−y) and
IP(X ≤ e−y) are equal; thus

1 − IP(X < e−y) = 1 − IP(X ≤ e−y) = 1 − FX(e
−y).

Now recalling that the CDF of a unif(min = 0, max = 1) random variable satisfies F(u) = u

(see Equation 6.2.2), we can say

FY(y) = 1 − FX(e
−y) = 1 − e−y, for y > 0.

We have consequently found the formula for the CDF of Y; to obtain the PDF fY we need only
differentiate FY :

fY(y) =
d

dy

(
1 − e−y

)
= 0 − e−y(−1),

or fY(y) = e−y for y > 0. This turns out to be a member of the exponential family of distribu-
tions, see Section 6.5.

Example 6.27. The Probability Integral Transform. Given a continuous random variable X

with strictly increasing CDF FX, let the random variable Y be defined by Y = FX(X). Then the
distribution of Y is unif(min = 0, max = 1).

Proof. We employ the CDF method. First note that the support of Y is (0, 1). Then for any
0 < y < 1,

FY(y) = IP(Y ≤ y) = IP(FX(X) ≤ y).

Now since FX is strictly increasing, it has a well defined inverse function F−1X . Therefore,

IP(FX(X) ≤ y) = IP(X ≤ F−1X (y)) = FX[F
−1
X (y)] = y.

Summarizing, we have seen that FY(y) = y, 0 < y < 1. But this is exactly the CDF of a
unif(min = 0, max = 1) random variable. !

Fact 6.28. The Probability Integral Transform is true for all continuous random variables with

continuous CDFs, not just for those with strictly increasing CDFs (but the proof is more com-

plicated). The transform is not true for discrete random variables, or for continuous random

variables having a discrete component (that is, with jumps in their CDF).

Example 6.29. Let Z ∼ norm(mean = 0, sd = 1) and let U = Z2. What is the PDF of U?
Notice first that Z2 ≥ 0, and thus the support of U is [0,∞). And for any u ≥ 0,

FU(u) = IP(U ≤ u) = IP(Z2 ≤ u).

But Z2 ≤ u occurs if and only if −
√
u ≤ Z ≤

√
u. The last probability above is simply the area

under the standard normal PDF from −
√
u to
√
u, and since φ is symmetric about 0, we have

IP(Z2 ≤ u) = 2 IP(0 ≤ Z ≤
√
u) = 2

[
FZ(
√
u) − FZ(0)

]
= 2Φ(

√
u) − 1,

because Φ(0) = 1/2. To find the PDF of U we differentiate the CDF recalling that Φ′ = φ.

fU(u) =
(
2Φ(
√
u) − 1

)′
= 2φ(

√
u) ·

1

2
√
u
= u−1/2φ(

√
u).

Substituting,

fU(u) = u−1/2
1
√
2π

e−(
√
u)2/2 = (2πu)−1/2e−u, u > 0.

This is what we will later call a chi-square distribution with 1 degree of freedom. See Section
6.5.
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6.4.3 How to do it with R

The distr package has functionality to investigate transformations of univariate distributions.
There are exact results for ordinary transformations of the standard distributions, and distr
takes advantage of these in many cases. For instance, the distr package can handle the trans-
formation in Example 6.23 quite nicely:

> library(distr)

> X <- Norm(mean = 0, sd = 1)

> Y <- 4 - 3 * X

> Y

Distribution Object of Class: Norm

mean: 4

sd: 3

So distr “knows” that a linear transformation of a normal random variable is again normal,
and it even knows what the correct mean and sd should be. But it is impossible for distr to
know everything, and it is not long before we venture outside of the transformations that distr
recognizes. Let us try Example 6.22:

> Y <- exp(X)

> Y

Distribution Object of Class: AbscontDistribution

The result is an object of class AbscontDistribution, which is one of the classes that
distr uses to denote general distributions that it does not recognize (it turns out that Z has a
lognormal distribution; see Section 6.5). A simplified description of the process that distr
undergoes when it encounters a transformation Y = g(X) that it does not recognize is

1. Randomly generate many, many copies X1, X2, . . . , Xn from the distribution of X,

2. Compute Y1 = g(X1), Y2 = g(X2), . . . , Yn = g(Xn) and store them for use.

3. Calculate the PDF, CDF, quantiles, and random variates using the simulated values of Y .

As long as the transformation is sufficiently nice, such as a linear transformation, the expo-
nential, absolute value, etc., the d-p-q functions are calculated analytically based on the d-p-q
functions associated with X. But if we try a crazy transformation then we are greeted by a
warning:

> W <- sin(exp(X) + 27)

> W

Distribution Object of Class: AbscontDistribution

The warning confirms that the d-p-q functions are not calculated analytically, but are instead
based on the randomly simulated values of Y . We must be careful to remember this. The nature
of random simulationmeans that we can get different answers to the same question: watch what
happens when we compute IP(W ≤ 0.5) using theW above, then define W again, and compute
the (supposedly) same IP(W ≤ 0.5) a few moments later.
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> p(W)(0.5)

[1] 0.57988

> W <- sin(exp(X) + 27)

> p(W)(0.5)

[1] 0.5804

The answers are not the same! Furthermore, if we were to repeat the process we would get
yet another answer for IP(W ≤ 0.5).

The answers were close, though. And the underlying randomly generated X’s were not the
same so it should hardly be a surprise that the calculated W’s were not the same, either. This
serves as a warning (in concert with the one that distr provides) that we should be careful
to remember that complicated transformations computed by R are only approximate and may
fluctuate slightly due to the nature of the way the estimates are calculated.

6.5 Other Continuous Distributions

6.5.1 Waiting Time Distributions

In some experiments, the random variable being measured is the time until a certain event
occurs. For example, a quality control specialist may be testing a manufactured product to see
how long it takes until it fails. An efficiency expert may be recording the customer traffic at a
retail store to streamline scheduling of staff.

The Exponential Distribution

We say that X has an exponential distribution and write X ∼ exp(rate = λ).

fX(x) = λe
−λx, x > 0 (6.5.1)

The associated R functions are dexp(x, rate = 1), pexp, qexp, and rexp, which give the
PDF, CDF, quantile function, and simulate random variates, respectively.

The parameter λ measures the rate of arrivals (to be described later) and must be positive.
The CDF is given by the formula

FX(t) = 1 − e−λt, t > 0. (6.5.2)

The mean is µ = 1/λ and the variance is σ2 = 1/λ2.
The exponential distribution is closely related to the Poisson distribution. If customers

arrive at a store according to a Poisson process with rate λ and if Y counts the number of cus-
tomers that arrive in the time interval [0, t), then we saw in Section 5.6 that Y ∼ pois(lambda =
λt). Now consider a different question: let us start our clock at time 0 and stop the clock
when the first customer arrives. Let X be the length of this random time interval. Then
X ∼ exp(rate = λ). Observe the following string of equalities:

IP(X > t) = IP(first arrival after time t),

= IP(no events in [0,t)),

= IP(Y = 0),

= e−λt,



6.5. OTHER CONTINUOUS DISTRIBUTIONS 151

where the last line is the PMF of Y evaluated at y = 0. In other words, IP(X ≤ t) = 1 − e−λt,
which is exactly the CDF of an exp(rate = λ) distribution.

The exponential distribution is said to bememoryless because exponential random variables
"forget" how old they are at every instant. That is, the probability that we must wait an addi-
tional five hours for a customer to arrive, given that we have already waited seven hours, is
exactly the probability that we needed to wait five hours for a customer in the first place. In
mathematical symbols, for any s, t > 0,

IP(X > s + t | X > t) = IP(X > s). (6.5.3)

See Exercise 6.5.

The Gamma Distribution

This is a generalization of the exponential distribution. We say that X has a gamma distribution
and write X ∼ gamma(shape = α, rate = λ). It has PDF

fX(x) =
λα

Γ(α)
xα−1e−λx, x > 0. (6.5.4)

The associatedR functions are dgamma(x, shape, rate = 1), pgamma, qgamma, and rgamma,
which give the PDF, CDF, quantile function, and simulate random variates, respectively. If
α = 1 then X ∼ exp(rate = λ). The mean is µ = α/λ and the variance is σ2 = α/λ2.

To motivate the gamma distribution recall that if X measures the length of time until the
first event occurs in a Poisson process with rate λ then X ∼ exp(rate = λ). If we let Y measure
the length of time until the αth event occurs then Y ∼ gamma(shape = α, rate = λ). When α
is an integer this distribution is also known as the Erlang distribution.

Example 6.30. At a car wash, two customers arrive per hour on the average. We decide to
measure how long it takes until the third customer arrives. If Y denotes this random time then
Y ∼ gamma(shape = 3, rate = 1/2).

6.5.2 The Chi square, Student’s t, and Snedecor’s F Distributions

The Chi square Distribution

A random variable X with PDF

fX(x) =
1

Γ(p/2)2p/2
xp/2−1e−x/2, x > 0, (6.5.5)

is said to have a chi-square distribution with p degrees of freedom. We write X ∼ chisq(df =
p). The associated R functions are dchisq(x, df), pchisq, qchisq, and rchisq, which
give the PDF, CDF, quantile function, and simulate random variates, respectively. See Figure
6.5.1. In an obvious notation we may define χ2α(p) as the number on the x-axis such that there
is exactly α area under the chisq(df = p) curve to its right.

The code to produce Figure 6.5.1 is

> curve(dchisq(x, df = 3), from = 0, to = 20, ylab = "y")

> ind <- c(4, 5, 10, 15)

> for (i in ind) curve(dchisq(x, df = i), 0, 20, add = TRUE)
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Figure 6.5.1: Chi square distribution for various degrees of freedom

Remark 6.31. Here are some useful things to know about the chi-square distribution.

1. If Z ∼ norm(mean = 0, sd = 1), then Z2 ∼ chisq(df = 1). We saw this in Example
6.29, and the fact is important when it comes time to find the distribution of the sample
variance, S 2. See Theorem 8.5 in Section 8.2.2.

2. The chi-square distribution is supported on the positive x-axis, with a right-skewed dis-
tribution.

3. The chisq(df = p) distribution is the same as a gamma(shape = p/2, rate = 1/2)
distribution.

4. The MGF of X ∼ chisq(df = p) is

MX(t) = (1 − 2t)−p , t < 1/2. (6.5.6)

Student’s t distribution

A random variable X with PDF

fX(x) =
Γ [(r + 1)/2]
√
rπ Γ(r/2)

(
1 +

x2

r

)−(r+1)/2
, −∞ < x < ∞ (6.5.7)

is said to have Student’s t distribution with r degrees of freedom, and we write X ∼ t(df = r).
The associated R functions are dt, pt, qt, and rt, which give the PDF, CDF, quantile function,
and simulate random variates, respectively. See Section 8.2.
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Snedecor’s F distribution

A random variable X with p.d.f.

fX(x) =
Γ[(m + n)/2]

Γ(m/2)Γ(n/2)

(
m

n

)m/2
xm/2−1

(
1 +

m

n
x
)−(m+n)/2

, x > 0. (6.5.8)

is said to have an F distribution with (m, n) degrees of freedom. We write X ∼ f(df1 =
m, df2 = n). The associated R functions are df(x, df1, df2), pf, qf, and rf, which
give the PDF, CDF, quantile function, and simulate random variates, respectively. We de-
fine Fα(m, n) as the number on the x-axis such that there is exactly α area under the f(df1 =
m, df2 = n) curve to its right.

Remark 6.32. Here are some notes about the F distribution.

1. If X ∼ f(df1 = m, df2 = n) and Y = 1/X, then Y ∼ f(df1 = n, df2 = m). Historically,
this fact was especially convenient. In the old days, statisticians used printed tables for
their statistical calculations. Since the F tables were symmetric in m and n, it meant that
publishers could cut the size of their printed tables in half. It plays less of a role today
now that personal computers are widespread.

2. If X ∼ t(df = r), then X2 ∼ f(df1 = 1, df2 = r). We will see this again in Section 11.3.3.

6.5.3 Other Popular Distributions

The Cauchy Distribution

This is a special case of the Student’s t distribution. It has PDF

fX(x) =
1

βπ


1 +
(
x − m
β

)2
−1

, −∞ < x < ∞ (6.5.9)

We write X ∼ cauchy(location = m, scale = β). The associatedR function is dcauchy(x,
location = 0, scale = 1).

It is easy to see that a cauchy(location = 0, scale = 1) distribution is the same as a
t(df = 1) distribution. The cauchy distribution looks like a norm distribution but with very
heavy tails. The mean (and variance) do not exist, that is, they are infinite. The median is
represented by the location parameter, and the scale parameter influences the spread of the
distribution about its median.

The Beta Distribution

This is a generalization of the continuous uniform distribution.

fX(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1, 0 < x < 1 (6.5.10)

We write X ∼ beta(shape1 = α, shape2 = β). The associated R function is dbeta(x,
shape1, shape2). The mean and variance are

µ =
α

α + β
and σ2 =

αβ

(α + β)2 (α + β + 1)
. (6.5.11)

See Example 6.3. This distribution comes up a lot in Bayesian statistics because it is a good
model for one’s prior beliefs about a population proportion p, 0 ≤ p ≤ 1. convenient
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The Logistic Distribution

fX(x) =
1

σ
exp
(
−
x − µ
σ

) [
1 + exp

(
−
x − µ
σ

)]−2
, −∞ < x < ∞. (6.5.12)

We write X ∼ logis(location = µ, scale = σ). The associated R function is dlogis(x,
location = 0, scale = 1). The logistic distribution comes up in differential equations as
a model for population growth under certain assumptions. The mean is µ and the variance is
π2σ2/3.

The Lognormal Distribution

This is a distribution derived from the normal distribution (hence the name). IfU ∼ norm(mean =
µ, sd = σ), then X = eUhas PDF

fX(x) =
1

σx
√
2π

exp

[
−(ln x − µ)2

2σ2

]
, 0 < x < ∞. (6.5.13)

We write X ∼ lnorm(meanlog = µ, sdlog = σ). The associated R function is dlnorm(x,
meanlog = 0, sdlog = 1). Notice that the support is concentrated on the positive x axis;
the distribution is right-skewed with a heavy tail. See Example 6.22.

The Weibull Distribution

This has PDF

fX(x) =
α

β

(
x

β

)α−1
exp

(
x

β

)α
, x > 0. (6.5.14)

We write X ∼ weibull(shape = α, scale = β). The associated R function is dweibull(x,
shape, scale = 1).

6.5.4 How to do it with R

There is some support of moments and moment generating functions for some continuous prob-
ability distributions included in the actuar package [25]. The convention is m in front of the
distribution name for raw moments, and mgf in front of the distribution name for the moment
generating function. At the time of this writing, the following distributions are supported:
gamma, inverse Gaussian, (non-central) chi-squared, exponential, and uniform.

Example 6.33. Calculate the first four raw moments for X ∼ gamma(shape = 13, rate = 1)
and plot the moment generating function.

We load the actuar package and use the functions mgamma and mgfgamma:

> library(actuar)

> mgamma(1:4, shape = 13, rate = 1)

[1] 13 182 2730 43680

For the plot we can use the function in the following form:

> plot(function(x) {

+ mgfgamma(x, shape = 13, rate = 1)

+ }, from = -0.1, to = 0.1, ylab = "gamma mgf")

Note: the exponent a 

below applies to the 

argument of exp, not 

to the value of exp         
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Figure 6.5.2: Plot of the gamma(shape = 13, rate = 1) MGF

Chapter Exercises

Exercise 6.1. Find the constant c so that the given function is a valid PDF of a random variable
X.

1. f (x) = Cxn, 0 < x < 1.

2. f (x) = Cxe−x, 0 < x < ∞.

3. f (x) = e−(x−C), 7 < x < ∞.

4. f (x) = Cx3(1 − x)2, 0 < x < 1.

5. f (x) = C(1 + x2/4)−1, −∞ < x < ∞.

Exercise 6.2. For the following random experiments, decide what the distribution of X should
be. In nearly every case, there are additional assumptions that should be made for the distribu-
tion to apply; identify those assumptions (which may or may not strictly hold in practice).

1. We throw a dart at a dart board. Let X denote the squared linear distance from the bulls-
eye to the where the dart landed.

2. We randomly choose a textbook from the shelf at the bookstore and let P denote the
proportion of the total pages of the book devoted to exercises.

3. We measure the time it takes for the water to completely drain out of the kitchen sink.
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4. We randomly sample strangers at the grocery store and ask them how long it will take
them to drive home.

Exercise 6.3. If Z is norm(mean = 0, sd = 1), find

1. IP(Z > 2.64)

> pnorm(2.64, lower.tail = FALSE)

[1] 0.004145301

2. IP(0 ≤ Z < 0.87)

> pnorm(0.87) - 1/2

[1] 0.3078498

3. IP(|Z| > 1.39) (Hint: draw a picture!)

> 2 * pnorm(-1.39)

[1] 0.1645289

Exercise 6.4. Calculate the variance of X ∼ unif(min = a, max = b). Hint: First calculate
IE X2.

type the exercise here

Exercise 6.5. Prove the memoryless property for exponential random variables. That is, for
X ∼ exp(rate = λ) show that for any s, t > 0,

IP(X > s + t | X > t) = IP(X > s).


