STA 247 - Answers for problem set \#2

Question 1: The random variable X has the binomial distribution with parameters $n=60$ and $p=1 / 40$. The random variable Y has the binomial distribution with $n=48$ and $p=1 / 30$. Prove that $P(X+Y \geq 31)$ is no more than $1 / 10$.

We can prove this using Markov's inequality. X and Y are non-negative, so $X+Y$ is also non-negative. A binomial(n, p) random variable has expectation np, so $E(X)=60 / 40=1.5$ and $E(Y)=48 / 30=1.6$. Since $E(X+Y)=E(X)+E(Y)$, we see that $E(X+Y)=3.1$. Markov's inequality then tells us that $P(X+Y \geq 31) \leq E(X+Y) / 31=3.1 / 31=1 / 10$.

Question 2: You have been informed that the main U of T web page is accessed an average of 25000 times per day. You have also been told that this web page is accessed more than 50000 times on 1% of the days. Say whatever you can about the standard deviation of the number of accesses in a day.

Let X be the number of accesses in a day. We know that $\mu=E(X)=25000$. We also know that $P(X>50000)=0.01$. Since the number of accesses in a day can't be negative, this is equivalent to $P(|X-25000|>25000)=0.01$.

Using Chebychev's inequality, we see that
$0.01=P(|X-25000|>25000)=P(|X-25000| \geq 25001)=P(|X-\mu| \geq 25001) \leq \sigma^{2} / 25001^{2}$
where σ is the standard deviation of X. From this we get that $\sigma^{2} \geq 0.01 \times 25001^{2}$, and therefore $\sigma \geq 2500.1$.

We might be able to say something stronger about σ if we knew more about the distribution, but not if we have to rely only on Chebychev's inequality.

Question 3: Suppose we roll 10 fair six-sided dice. Let S be the sum of the numbers showing on all of these dice. Find the mean and standard deviation of S, and the mean and standard deviation of $S / 10$, which is the average value shown on the 10 dice.

Let the numbers on the ten dice be X_{1}, \ldots, X_{10}.
Direct computaton gives $E\left(X_{i}\right)=3.5$ and $\operatorname{Var}\left(X_{i}\right)=2.91666 \ldots$ for all i.
From this, we get that $E(S)=E\left(X_{1}\right)+\cdots+E\left(X_{10}\right)=10 \times 3.5=35$, and $E(S / 10)=$ $E(S) / 10=3.5$.

Since the rolls of different dice will be independent, we have that $\operatorname{Var}(S)=\operatorname{Var}\left(X_{1}\right)+\cdots+$ $\operatorname{Var}\left(X_{10}\right)=10 \times 2.91666 \ldots=29.1666 \ldots$, and hence $S D(S)=\sqrt{29.1666 \ldots}=5.400617 \ldots$ We then get $\operatorname{Var}(S / 10)=\operatorname{Var}(S) / 10^{2}=0.291666 \ldots$ and $S D(S / 10)=0.5400617 \ldots$

Question 4: Suppose that the joint distribution of the random variables A, B, C, D, and E is described by the following directed graphical model:

Suppose also that the marginal distributions of A and B are both binomial $(2,1 / 4)$, the conditional distribution of C given $A=a$ and $B=a$ is $\operatorname{Bernoulli}((a+b) / 4)$, and the conditional distributions of D and E given $C=c$ are both Bernoulli($c / 2$).
a) Compute $P(A=1, B=2, C=1, D=0, E=1)$.

According to the directed graphical model,

$$
\begin{aligned}
P(A & =1, B=2, C=1, D=0, E=1) \\
& =P(A=1) P(B=2) P(C=1 \mid A=1, B=2) P(D=0 \mid C=1) P(E=1 \mid C=1) \\
& =[2(1 / 4)(3 / 4)][(1 / 4)(1 / 4)][3 / 4][1 / 2][1 / 2] \\
& =0.00439453125
\end{aligned}
$$

b) Find $P(A=0, B=0 \mid C=1)$.
$P(A=0, B=0 \mid C=1)=P(A=0, B=0, C=1) / P(C=1)$. But when $A=0$ and $B=0$, the condtional distribution of C given these values for A and B is Bernoulli(0), for which $C=1$ has probability zero. Therefore $P(A=0, B=0 \mid C=1)=0$.
One can calculate that $P(A=0 \mid C=1)$ and $P(B=0 \mid C=1)$ are both non-zero, and so their product is non-zero. This confirms that A is not conditionally independent of B given C, as one would suspect from the directed graphical model (though one cannot conclude this with certainty from the graph alone).
c) Find $P(D=0, E=0 \mid C=1)$.

According to the graphical model, D and E are conditionally independent given C, so

$$
P(D=0, E=0 \mid C=1)=P(D=0 \mid C=1) P(E=0 \mid C=1)=(1 / 2)(1 / 2)=1 / 4
$$

