STA 247 - Quiz \#2, 2001-10-21, 3:10pm - 35 minutes long

No books, no notes, and no calculators may be used.
All numerical answers must be actual numbers (decimals such as 0.15 or simple fractions such as 3/13), not just a formula. If this requires arithmetic on numbers bigger than 1000, you've either made a mistake, or you should think of an easier way to solve the problem.

Q1 (40 marks): An urn contains three balls, which are labelled with the numbers 1, 2, and 3 . You drawn two balls from this urn, not replacing the first before drawing the second. Let X be the number on the first ball you draw, and let Y be the number on the second ball you draw. Also, define random variables U and V as $U=X+Y$ and $V=X-Y$.
a) Write down a table of the joint probability mass function for X and Y - that is, a table giving $P(X=x, Y=y)$ for all values of x and y in $\{1,2,3\}$. No explanations are required.
b) Write down a table of the joint probability mass function for U and V. No explanations are required.
c) Find the marginal distributions for U and V (that is, find $P(U=u)$ for all possible u and $P(V=v)$ for all possible $V)$. Show your work.
d) Find $E\left(V^{2}\right)$. Show your work.
e) Are U and V independent? Show why or why not.

Q2 (35 marks): You roll a six-sided die. Let X be the number showing on this die (from 1 to 6). You then flip a coin once if $X=1$, twice if $X=2$, or three times if $X \geq 3$. Let Y be the number of times the coin lands heads in these flips.
a) Write down a table of the joint probability mass function for X and Y - that is, a table giving $P(X=x, Y=y)$ for all possible values of x and y. Show your work.
b) Write down the probability mass function for the conditional distribution of X given $Y=1$. Show your work.

Q3 (25 marks): Let X and Y be random variables, both with range $\{1,2,3\}$. Prove that if X and Y are independent, then the event $X>1$ is independent of the event $Y=2$. Use only definitions, properties of numbers and sets, and the basic axioms of probability in your proof.

