Consider the problem of estimating θ from two data points, $X_1, X_2 \overset{\text{iid}}{\sim} U(\theta, \theta + 1)$. We will look at the following estimator:

$$\delta_0(x) = x_1 - 1/2$$

Consider first squared-error loss, for which $L(\theta, a) = (\theta - a)^2$, with a the real-valued estimate.

a) Find the risk function for δ_0.

b) Apply the Rao-Blackwell theorem to find an estimator δ_1 that should have risk at least as small as δ_0. As the sufficient statistic, use the order statistics, $X_{(1)}, X_{(2)}$.

c) Find the risk function for δ_1.

d) Show that δ_1 is also the Pitman estimator for this problem, by correcting $\delta_0(x)$ by subtracting $E_{\theta=0} [\delta_0(X) | Y = x_1 - x_2]$, where $Y = X_1 - X_2$. Confirm that this is also what you get by finding the mean of the normalized likelihood function.

The Rao-Blackwell theorem applies only to convex loss functions. Consider instead the class, \mathcal{M}, of loss functions of the form $L(\theta, a) = f(|\theta - a|)$, with f being a monotonically non-decreasing function (ie, $f(d) \leq f(d')$ if $d \leq d'$).

e) For the specific case of this model, with δ_0 and δ_1 above, prove that for any loss function in the class \mathcal{M}, the risk for δ_1 is at least as small as the risk for δ_0.

Suppose that the model is instead that X_1 and X_2 are IID from a mixture distribution, with probability $9/10$ that X_i is exactly $\theta + 1/2$ and probability $1/10$ that X_i is drawn from the $U(\theta, \theta + 1)$ distribution. In other words, $X_1, X_2 \overset{\text{iid}}{\sim} (9/10)\delta_{\theta+1/2} + (1/10)U(\theta, \theta + 1)$, where δ_w is a point mass at w. We will look at the same estimator, δ_0, as above. If we use the order statistics as the sufficient statistic, the Rao-Blackwell theorem applied to δ_0 will give δ_1 as before.

f) Find a loss function in the class \mathcal{M} for which the estimator δ_1 does not have risk at least as small as δ_0.