1. Given $\theta \in (0, \infty)$, observations X and Y are independent, with X having the Poisson(θ) distribution and Y having the Poisson($1/\theta$) distribution. The Poisson probability function (over the non-negative integers) is $f(z; \lambda) = \lambda^z \exp(-\lambda)/z!$.

Find a simple form of the minimal sufficient statistic for this model, and prove it is minimal sufficient.
2. Given $\theta \in (1, \infty)$, observations $Y_1, \ldots, Y_n \overset{iid}{\sim} U(0, \theta)$. Suppose that we use as the prior for θ the distribution with density proportional to $I(\theta > 1)/\theta^2$.

(a) Find the posterior density for θ given y_1, \ldots, y_n.

(b) Find the predictive density for a new observation, Y_{n+1}, given y_1, \ldots, y_n. Assume that, given a value for θ, Y_{n+1} is independent of Y_1, \ldots, Y_n, and has the same distribution as each of Y_1, \ldots, Y_n.
3. Given \(\theta \in (0, \infty) \), suppose \(Y_1, \ldots, Y_n \) are IID observations with an exponential distribution with mean \(\theta \) shifted to the right by \(\theta \). In other words, the density for each \(Y_i \) is \(I(y > \theta)(1/\theta) \exp(-\frac{y-\theta}{\theta}) \).

(a) Find a simple expression for the minimal sufficient statistic for this model and prove that it is minimal sufficient.

(b) Show that the minimal sufficient statistic is not complete by showing that two different unbiased estimators of \(\theta \) exist.

(c) Find an ancillary statistic that is a function of the minimal sufficient statistic.
4. Consider the distribution of random variables Y_1, Y_2, Y_3, \ldots in $\{0, 1\}$ defined by

$$P(Y_{i+1} = 1 \mid Y_1 = y_1, \ldots, Y_i = y_i) = \frac{2 + \sum_{j=1}^{i} y_j}{i + 3}$$

For $i = 0$, this should be interpreted as $P(Y_1 = 1) = 2/3$.

(a) Prove that the distribution of Y_1, Y_2, Y_3, \ldots is exchangeable.
(b) Find the mean and variance of $\bar{Y}_n = (Y_1 + Y_2 + \cdots + Y_n)/n$ (directly, without using DeFinetti’s Representation Theorem).

(c) Comment on the meaning of the limit of the mean and variance of \bar{Y}_n found in part (b) as n goes to infinity, with reference to DeFinetti’s Representation Theorem.