Question 1: Consider a model in which both the data space, \mathcal{X}, and the parameter space, Ω, are finite sets, and in which $P_\theta(\{x\}) > 0$ for all $\theta \in \Theta$ and $x \in \mathcal{X}$. Let $T(X)$ be some statistic. Prove that if the cardinality of the range of $T(X)$ is greater than the cardinality of Ω, then $T(X)$ is not a complete statistic.

Question 2: Given $\theta \in (0, \infty)$, suppose that for a fixed n that is known, Y_1, \ldots, Y_n are IID observations with an exponential distribution with mean θ shifted to the right by θ. In other words, the density for each Y_i is $I(y > \theta)(1/\theta)\exp(-(y - \theta)/\theta)$. Find the minimal sufficient statistic, and show that it is not complete by finding two different unbiased estimators of θ that are both functions of the minimal sufficient statistic.