
STA 410/2102, Fall 2015 — Assignment #1

Due at the start of class on October 22. Please hand it in on 8 1/2 by 11 inch paper,
stapled in the upper left, with no other packaging.

This assignment is to be done by each student individually. You may discuss it in general
terms with other students, but the work you hand in should be your own. In particular,
you should not leave any discussion with someone else with any written notes (either
paper or electronic).

Suppose you are interested in what proportion of adults in Toronto play Minecraft
regularly. You send out surveys to 130 Toronto adults selected uniformly at random
from all adults in Toronto. Amazingly, you get responses from everyone sent a survey.
(In real surveys, non-response is of course a big problem, but we’re ignoring it here.) Of
the n = 130 people surveyed, x = 75 say they play Minecraft.

At this point, the maximum likelihood estimate for the proportion of adult Toronto-
nians who play Minecraft is easily obtained as x/n = 75/130. Unfortunately, you now
realize that this isn’t all you are interested in. You’d really like to know the proportion
of men who play Minecraft and the proportion of women who play Minecraft, but you
do not know the genders of the respondents.

To address this, you send out more surveys, to 25 randomly selected Toronto men and
to 25 randomly selected Toronto women. (Your money is running out, so you can’t afford
bigger samples). Fortunately, your good fortune in having everyone respond continues,
so non-response is also not a problem in these surveys. Of the m1 = 25 men surveyed,
x1 = 20 say they play Minecraft. Of the m2 = 25 women surveyed, x2 = 6 say they play
Minecraft.

You would now like to find the maximum likelihood estimates for the proportion, p1,
of men who play Minecraft and the proportion, p2, of women who play Minecraft, based
on all the data you have. You assume that the population of Toronto is equally divided
into men and women, and that whether one person plays Minecraft is independent of
whether another plays Minecraft.

The likelihood function is based on x having the binomial distribution with parame-
ters n and (p1 + p2) / 2, on x1 having the binomial distribution with parameters m1 and
p1, and on x2 having the binomial distribution with parameters m2 and p2. So we can
write the likelihood function as follows:
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Your task is to write a script and associated functions to find the maximum likelihood
estimates for p1 and p2 using several methods, and compare how well they work. All the
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methods should work by maximizing the log of the likelihood, not the likelihood itself.
The methods you should try are as follows:

• Alternating maximization (non-linear Gauss-Siedel iteration), using bisection to
alternately find the maximum with respect to p1 and with respect to p2.

• Multivariate Newton iteration.

• Multivariate method of scoring.

• Just using R’s built-in nlm function, passing it a function that computes the log-
likelihood (but not its derivatives).

Your implementations of these methods should be designed to work for any data set (ie,
any valid values of n, m1, m2, x, x1, and x2), not just the particular data mentioned
above, though that is the data you will use when presenting results.

To implement these methods, you will need to write several functions involving the
log likelihood for this model. They should have names and parameters as follows, where
p is a vector containing the parameters p1 and p2, and n, m1, m2, x, x1, and x2 are scalars
corresponding to the other quantities mentioned above:

log_likelihood <- function (p, n, m1, m2, x, x1, x2)

log_likelihood_gradient <- function (p, n, m1, m2, x, x1, x2)

log_likelihood_hessian <- function (p, n, m1, m2, x, x1, x2)

fisher_information <- function (p, n, m1, m2, x, x1, x2)

You should use these functions to implement four functions for finding the maximum
likelihood estimate using the four methods mentioned above, as follows:

mle_alt <- function (n,m1,m2,x,x1,x2,initial)

mle_mvn <- function (n,m1,m2,x,x1,x2,initial,iters)

mle_mos <- function (n,m1,m2,x,x1,x2,initial,iters)

mle_nlm <- function (n,m1,m2,x,x1,x2,initial)

where initial is an initial guess for the parameters.

For mle_alt, you should use the bisect2 function from the Week 2 examples on the
course web page, which continues until the zero has been found to the maximum possible
accuracy. (You may want to comment out the call of the cat function that prints trace
information.) You should keep iterating your alternating maximization procedure until
the estimate is no longer changing.
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For mle_mvn and mle_mos, you should use the mvnewton function from the Week 3
examples on the course web page. The iters argument for mle_mvn and mle_mos

specifies how many iterations to do. You should set this argument to a value large
enough that the final estimate is not changing, or is just flipping among a small number
of nearby values.

For mle_nlm, you should let nlm decide when to stop, using its default criterion.

Your functions (except for mle_nlm) should print the estimates after each itera-
tion, so that you can see how rapidly the method is converging. You should use
options(digits=17) to see these estimates (and other quantities) to the full precision
of the floating-point numbers used by R.

You should try out these functions on the data described above, and discuss how
well they worked. In particular, you should discuss at least the following:

• How sensitive the methods are to the initial guess.

• Whether the methods produce the same answer (with a suitable initial guess), and
if not, which answer is better (ie, comes closer to maximizing the log likelihood).

• How rapidly the methods (except mle_nlm) converge, and in particular whether
convergence is linear, quadratic, or of some other form.

• How easy it was to implement the methods.

You should hand in a listing of your R functions and script, which should be in two
files. One file should contain the definitions of with the functions of general use (the ones
listed above), which someone might use to find estimates for some other data set of this
form. It should contain source commands to read in the bisect.r and mvnewton.r

files from the course web page. The other file should contain the script you used to apply
these functions to the particular data set described above, and to produce any output
needed for your discussion. It should contain a source command to read in your file of
function definitions.

You should hand in your derivation of the log likelihood function and its gradient
vector and Hessian matrix (which may be hand-written).

You should also hand in the output of the script you ran, including the estimates
found, as well as other text or graphical output that helps support your discussion.

Finally, you should hand in your discussion, which may also be hand-written (though
it’s probably easier to type it in, particularly if you want to include numeric output from
running your script).

Extra question for grad students in STA 2102 (bonus for STA 410 students):

Use the Hessian matrix computed at the maximum likelihood estimate to obtain stan-
dard errors for p1 and p2. Note in this regard that statistical theory suggests that the
inverse of minus the Hessian of the log likelihood is an estimate of the covariance matrix
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of the sampling distribution of the estimate, or alternatively, of the covariance matrix
of the posterior distribution (if the prior information is not strong). Also find standard
errors using the Fisher information matrix, and compare them to those found using the
Hessian (observed information). Do they differ much for the data used here? Might they
differ more for other data?

[ For grad students, this part is worth 10 marks and the main part is worth 90 marks.
For undergrads, this part is worth a bonus of up to 10 marks, and the main part is worth
100 marks. ]
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