
STA 410/2102, Fall 2015 — Answers to the first test.

Question 1: [ 15 Marks ] For some function f (which we can compute), we wish to find a solution
to f(x) = 0, with an absolute accuracy of 10−10 or better. (That is, we wish to find an x such that
|x− x∗| ≤ 10−10, where x∗ is some true solution to f(x) = 0.)

We know that f is continuous, and that f(10) = 12 and f(110) = −2. We plan to use bisection to
solve f(x) = 0, starting with the interval from 10 to 110. How many iterations of bisection (each of
which evaluates f once, not counting the values at the initial endpoints) will be needed to guarantee
that we will obtain a solution with the required accuracy? Explain your answer.

Note: 210 = 1024 ≈ 103.

Bisection operates by narrowing the interval in which the solution must be by a factor of two each
iteration.

We need to get the interval down to the size 2 × 10−10, at which point the mid-point of the interval
must be within 10−10 of the solution.

The initial interval is of size 110− 10 = 100.

So we need to shrink the interval by the factor 100 / (2 × 10−10) = 1012/2. This is approximately
240/2 = 239.

So 39 iterations will be needed.

Question 2: [ 70 Marks Total ] Suppose we model positive real data values, y1, . . . , yn, as being
independently generated from a gamma distribution, whose density function is

f(y) =
ba

Γ(a)
ya−1 exp(−by)

where a and b are positive real model parameters. We wish to find the maximum likelihood estimates
for a and b based on the data y1, . . . , yn.

Note that Γ(a) is the “gamma function”. The log of the gamma function is computed by the R
function lgamma. The derivative of the log of the gamma function is computed by R’s digamma

function, and the second derivative by trigamma. All these functions may take a vector as their
argument, and return the vector of corresponding function values.

a) [ 10 Marks ] Write an R function below that computes the log likelihood for parameter values
a and b given a data vector y. The beginning of the function definition is already shown below,
to which you need to add the body of the function. Do not use R’s built-in dgamma function.

log_lik <- function (y,a,b)

sum (a*log(b) - lgamma(a) + (a-1)*log(y) - b*y)

b) [ 6 Marks ] Write an R function below that computes the derivative of the log likelihood with
respect to the a parameter:

log_lik_deriv_a <- function (y,a,b)

sum (log(b) - digamma(a) + log(y))
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c) [ 6 Marks ] Write an R function below that computes the derivative of the log likelihood with
respect to the b parameter:

log_lik_deriv_b <- function (y,a,b)

sum (a/b-y)

d) [ 6 Marks ] Write an R function below that computes the second derivative of the log likelihood
with respect to the a parameter:

log_lik_deriv2_a <- function (y,a,b)

length(y) * -trigamma(a)

e) [ 6 Marks ] Write an R function below that computes the second derivative of the log likelihood
with respect to the b parameter:

log_lik_deriv2_b <- function (y,a,b)

length(y) * -a/b^2

Suppose we decide to find the maximum likelihood estimates for a and b by using an alternating
maximization procedure (also known as non-linear Gauss-Seidel iteration). That is, we alternately
maximize the log likelihood with respect to a, with b fixed, then with respect to b, with a fixed, then
with respect to a again, etc. We decide to use univariate Newton iteration to maximize with respect
to a or with respect to b.

f) [ 15 Marks ] Write an R function below that tries to find a zero of a univariate function f1,
whose derivative is the function f2, starting from the initial point x, using m iterations of Newton
iteration. The beginning of the function is already present; you should write the body of the
function. Your function should use only basic R facilities, not R’s nlm function.

newton_iteration <- function (f1,f2,x,m)

{

for (i in 1:m)

x <- x - f1(x)/f2(x)

x

}

g) [ 21 Marks ] Write an R function that uses the newton_iteration function (with m set to 10)
and the functions for computing the log likelihood and its derivatives to find the maximum
likelihood estimate for a and b given a data vector y. Your function should use alternating
maximization as described above. The value returned should be a vector of estimates for a and
b. The beginning of the functions is already present, with the argument n being the number of
iterations of alternating maximization to do, and the arguments a and b being the initial values
to use to start the iterations.
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mle <- function (y,a,b,n)

{

for (i in 1:n) {

a <- newton_update (function (a) log_lik_deriv_a(y,a,b),

function (a) log_lik_deriv2_a(y,a,b), a, 10)

b <- newton_update (function (b) log_lik_deriv_b(y,a,b),

function (b) log_lik_deriv2_b(y,a,b), b, 10)

}

c(a,b)

}

Question 3: [ 15 Marks ] We wish to compute an approximation to the integral of some function,
f , of d variables, over the range (0, 1)d. The function f is continuous and infinitely differentiable.

For example, if d = 3, we wish to compute an approximation to

I =

∫ 1

0

∫ 1

0

∫ 1

0
f(x, y, z) dz dy dx

We approximate I by nested estimates of univariate integrals. So for the d = 3 example, we define

h(x, y) =

∫ 1

0
f(x, y, z) dz

and

g(x) =

∫ 1

0
h(x, y) dy

so that

I =

∫ 1

0
g(x) dx

Suppose we approximate all the integrals we need to compute using the Trapezoid Rule. For example,
we approximate the integral of g(x) above that gives I using the Trapezoid Rule. Similarly, for every
evaluation of g(x) at some point x, we approximate the integral of h(x, y) above that gives g(x) using
the Trapezoidal Rule, and similarly for the integral of f(x, y, z) that gives h(x, y). Suppose that for
all uses of the Trapezoidal Rule we divide the interval (0, 1) into the same number of sub-intervals
(and hence the number of points where we evaluate the integrand is this number plus one).

Find the rate at which the error declines as the total number, n, of points at which f is evaluated
increases, explaining how you obtained your answer, and how the rate depends on d.

If we evaluate the integrand at m points for each use of the Trapezoid Rule in the scheme above, then
we will evaluate the function f at md points. So we need to use m = n1/d.

The univariate Trapezoid Rule with m points has error proportional to m−2 (for large m), which is
n−2/d.

The errors at each stage of integration will tend to add (we can’t count on being so lucky that they
cancel out). So the error in I will decline in proportion to n−2/d.

Suppose that instead of the Trapezoid Rule we use Simpson’s Rule for all integrations. Then how
fast will the error declines with n?

The error for the univariate Simpson’s Rule with m points declines in proportion to m−4, so the same
argument as above leads to the error in I declining in proportion to n−4/d.
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