ANSWERS FOR FIRST TEST	1/30	
	2/25	
STA $414/2104$ — First Test — $2007-02-06$	3/25	
No books, notes, or calculators are allowed.	4/20	
	T/100	

Question 1: [30 marks] Consider a classification problem in which there are two real-valued inputs, x_1 and x_2 , and a binary (0/1) target (class) variable, t. There are 20 training cases, plotted below. Cases where t = 1 are plotted as black dots, cases where t = 0 as white dots, with the location of the dot giving the inputs, x_1 and x_2 , for that training case.

a) Estimate the error rate of the one-nearest-neighbor (1-NN) classifier for this problem using leave-one-out cross validation. (Ie, cross validation in which each training case is predicted using all the other training cases.)

Three training cases will be mis-classified using 1-NN, based on the other training cases. They are marked above. The leave-one-out cross-validation error rate is therefore 3/20.

b) Suppose we use the three-nearest-neightbor (3-NN) method to estimate the probability that a test case is in class 1. For test cases with each of the following sets of input values, find the estimated probability of class 1.

$$x_1 = 1, x_2 = 1$$

Two of the three training cases nearest to this point are in class 1, so the estimated probability of class 1 is 2/3.

$$x_1 = 2, x_2 = 2$$

One of the three training cases nearest to this point are in class 1, so the estimated probability of class 1 is 1/3.

c) Suppose we use 3-NN to estimate class probabilities, and that our loss function is $L_{00} = L_{11} = 0$, $L_{01} = 1$, and $L_{10} = 3$, where L_{kj} is the loss if we classify a case as class j when it is actually class k. Say how we should classify each of the following test points, and give the expected loss when we classify this way.

$$x_1 = 1, \ x_2 = 1$$

If we classify this point in class 1, the expected loss will be $P(class\ 0)L_{01}=(1/3)\cdot 1=1/3$. If we classify this point in class 0, the expected loss will be $P(class\ 1)L_{10}=(2/3)\cdot 3=2$. We should therefore classify it as class 1, with expected loss 1/3.

$$x_1 = 2, \ x_2 = 2$$

If we classify this point in class 1, the expected loss will be $P(class\ 0)L_{01}=(2/3)\cdot 1=2/3$. If we classify this point in class 0, the expected loss will be $P(class\ 1)L_{10}=(1/3)\cdot 3=1$. We should therefore classify it as class 1, with expected loss 2/3. **Question 2:** [25 marks] Let X_1, X_2, X_3, \ldots for a sequence of binary (0/1) random variables. Given a value for θ , these random variables are independent, and $P(X_i = 1) = \theta$ for all i. Suppose that we are sure that θ is at least 1/2, and that our prior distribution for θ for values 1/2 and above is uniform on the interval [1/2, 1]. We have observed that $X_1 = 0$, but don't know the values of any other X_i .

a) Write down the likelihood function for θ , based on the observation $X_1 = 0$.

$$L(\theta) = P(X_1 = 0 | \theta) = 1 - \theta$$

b) Find an expression for the posterior probability density function of θ given $X_1 = 0$, simplified as much as possible, with the correct normalizing constant included.

The prior density is $P(\theta) = 2$ for $\theta \in [1/2, 1]$, θ otherwise.

The posterior density is $P(\theta \mid X_1 = 0) = 0$ for $\theta \notin [1/2, 1]$, and otherwise $P(\theta \mid X_1 = 0) \propto P(\theta) L(\theta) \propto 2(1-\theta)$. The normalizing constant can be found by evaluating $\int_{1/2}^{1} 2(1-\theta) d\theta = 1/4$, from which we find that $P(\theta \mid X_1 = 0) = 8(1-\theta)$.

- c) Find the predictive probability that $X_2=1$ given that $X_1=0$. An actual number is required. $P(X_2=1 \mid X_1=0) = \int P(X_2=1 \mid \theta) \, P(\theta \mid X_1=0) \, d\theta = \int_{1/2}^1 \theta \, 8 \, (1-\theta) \, d\theta = 2/3$
- d) Find the probability that $X_2 = X_3$ given that $X_1 = 0$. An actual number is required.

$$P(X_{2} = X_{3} | X_{1} = 0) = \int P(X_{2} = X_{3} | \theta) P(\theta | X_{1} = 0) d\theta$$

$$= \int [P(X_{2} = 0, X_{3} = 0 | \theta) + P(X_{2} = 1, X_{3} = 1 | \theta)] P(\theta | X_{1} = 0) d\theta$$

$$= \int [P(X_{2} = 0 | \theta) P(X_{3} = 0 | \theta) + P(X_{2} = 1 | \theta) P(X_{3} = 1 | \theta)] P(\theta | X_{1} = 0) d\theta$$

$$= \int_{1/2}^{1} ((1 - \theta)^{2} + \theta^{2}) 8 (1 - \theta) d\theta$$

$$= 7/12$$

Note that X_2 and X_3 are independent given θ , but they are not independent given just X_1 .

Question 3: [25 marks] Consider a linear basis function regression model, with one input and the following three basis functions:

$$\phi_0(x) = 1
\phi_1(x) = x
\phi_2(x) = \begin{cases}
1 - x^2 & \text{if } |x| < 1 \\
0 & \text{if } |x| \ge 1
\end{cases}$$

The model for the target variable, t, is that P(t|x, w) = N(t|y(x, w), 1), where

$$y(x,w) = \sum_{j=0}^{M-1} w_j \phi_j(x)$$

Suppose we have four data points, as plotted below:

What is the maximum likelihood (least squares) estimate for the parameters w_0 , w_1 , and w_2 ? Elaborate calculations should not be necessary.

Note that $\phi_2(x)$ is zero for the data points where x=-1.5 and x=+1.5. So the value of w_2 will not affect the value of y(x,w) at these points. It can therefore be used to fit the two data points at x=0 (where $\phi(x)=1$) as well as possible, regardless of what w_0 and w_1 are. This in turn means that we can use w_0 and w_1 to fit the two data points at x=-1.5 and x=+1.5. Looking at the line joining these two points, we see that the intercept is -1/2 and the slope is -1/3. We will therefore fit these points exactly if we use $w_0=-1/2$ and $w_1=-1/3$. Choosing $w_2=1.75$ will then lead to y(0,w)=1.25, which is the best value we can have for fitting the two data points at x=0.

Question 4: [20 marks] Consider the Poisson model, with unknown positive parameter λ , for a random variable, X, that takes on non-negative integer values:

$$P(X = x) = \frac{\lambda^x}{x!} \exp(-\lambda)$$

Show how this model can be expressed in the exponential family form, with a natural parameter η , a sufficient statistic u(x), and functions h(x) and $g(\eta)$, so that the probability for a value x has the form

$$P(X = x) = h(x)g(\eta) \exp(\eta^T u(x))$$

We can let $\eta = \log \lambda$ and u(x) = x. The probability function can then be written as

$$P(X = x) = (1/x!) \exp(-\exp(\eta)) \exp(\eta u(x))$$

so h(x) = 1/x! and $g(\eta) = \exp(-\exp(\eta))$.