ANSWERS FOR FIRST TEST

STA 414/2104 — First Test — 2007-02-06

No books, notes, or calculators are allowed.

Question 1: [30 marks] Consider a classification problem in which there are two real-valued inputs, \(x_1 \) and \(x_2 \), and a binary (0/1) target (class) variable, \(t \). There are 20 training cases, plotted below. Cases where \(t = 1 \) are plotted as black dots, cases where \(t = 0 \) as white dots, with the location of the dot giving the inputs, \(x_1 \) and \(x_2 \), for that training case.

![Graph of data points](image)

a) Estimate the error rate of the one-nearest-neighbor (1-NN) classifier for this problem using leave-one-out cross validation. (Ie, cross validation in which each training case is predicted using all the other training cases.)

Three training cases will be mis-classified using 1-NN, based on the other training cases. They are marked above. The leave-one-out cross-validation error rate is therefore 3/20.
b) Suppose we use the three-nearest-neighbor (3-NN) method to estimate the probability that a test case is in class 1. For test cases with each of the following sets of input values, find the estimated probability of class 1.

\[x_1 = 1, \ x_2 = 1 \]

Two of the three training cases nearest to this point are in class 1, so the estimated probability of class 1 is 2/3.

\[x_1 = 2, \ x_2 = 2 \]

One of the three training cases nearest to this point are in class 1, so the estimated probability of class 1 is 1/3.

\[x_1 = 1, \ x_2 = 1 \]

If we classify this point in class 1, the expected loss will be \(P(\text{class } 0) L_{01} = \frac{1}{3} \cdot 1 = \frac{1}{3} \).

If we classify this point in class 0, the expected loss will be \(P(\text{class } 1) L_{10} = \frac{2}{3} \cdot 3 = 2 \).

We should therefore classify it as class 1, with expected loss 1/3.

\[x_1 = 2, \ x_2 = 2 \]

If we classify this point in class 1, the expected loss will be \(P(\text{class } 0) L_{01} = \frac{2}{3} \cdot 1 = \frac{2}{3} \).

If we classify this point in class 0, the expected loss will be \(P(\text{class } 1) L_{10} = \frac{1}{3} \cdot 3 = 1 \).

We should therefore classify it as class 1, with expected loss 2/3.
Question 2: [25 marks] Let X_1, X_2, X_3, \ldots for a sequence of binary (0/1) random variables. Given a value for θ, these random variables are independent, and $P(X_i = 1) = \theta$ for all i. Suppose that we are sure that θ is at least $1/2$, and that our prior distribution for θ for values $1/2$ and above is uniform on the interval $[1/2, 1]$. We have observed that $X_1 = 0$, but don’t know the values of any other X_i.

a) Write down the likelihood function for θ, based on the observation $X_1 = 0$.

$$L(\theta) = P(X_1 = 0 \mid \theta) = 1 - \theta$$

b) Find an expression for the posterior probability density function of θ given $X_1 = 0$, simplified as much as possible, with the correct normalizing constant included.

The prior density is $P(\theta) = 2$ for $\theta \in [1/2, 1]$, 0 otherwise.

The posterior density is $P(\theta \mid X_1 = 0) = 0$ for $\theta \notin [1/2, 1]$, and otherwise $P(\theta \mid X_1 = 0) \propto P(\theta) L(\theta) \propto 2(1-\theta)$. The normalizing constant can be found by evaluating $\int_{1/2}^1 2(1-\theta) \, d\theta = 1/4$, from which we find that $P(\theta \mid X_1 = 0) = 8(1-\theta)$.

c) Find the predictive probability that $X_2 = 1$ given that $X_1 = 0$. An actual number is required.

$$P(X_2 = 1 \mid X_1 = 0) = \int P(X_2 = 1 \mid \theta) P(\theta \mid X_1 = 0) \, d\theta = \int_{1/2}^1 8(1-\theta) \, d\theta = 2/3$$

d) Find the probability that $X_2 = X_3$ given that $X_1 = 0$. An actual number is required.

$$P(X_2 = X_3 \mid X_1 = 0) = \int P(X_2 = X_3 \mid \theta) P(\theta \mid X_1 = 0) \, d\theta$$

$$= \int [P(X_2 = 0, X_3 = 0 \mid \theta) + P(X_2 = 1, X_3 = 1 \mid \theta)] P(\theta \mid X_1 = 0) \, d\theta$$

$$= \int [P(X_2 = 0 \mid \theta)P(X_3 = 0 \mid \theta) + P(X_2 = 1 \mid \theta)P(X_3 = 1 \mid \theta)] P(\theta \mid X_1 = 0) \, d\theta$$

$$= \int_{1/2}^1 ((1-\theta)^2 + \theta^2) 8(1-\theta) \, d\theta$$

$$= 7/12$$

*Note that X_2 and X_3 are independent given θ, but they are not independent given just X_1.

3
Question 3: [25 marks] Consider a linear basis function regression model, with one input and the following three basis functions:

\[
\begin{align*}
\phi_0(x) &= 1 \\
\phi_1(x) &= x \\
\phi_2(x) &= \begin{cases}
1 - x^2 & \text{if } |x| < 1 \\
0 & \text{if } |x| \geq 1
\end{cases}
\end{align*}
\]

The model for the target variable, \(t \), is that \(P(t|x, w) = N(t|y(x, w), 1) \), where

\[
y(x, w) = \sum_{j=0}^{M-1} w_j \phi_j(x)
\]

Suppose we have four data points, as plotted below:

What is the maximum likelihood (least squares) estimate for the parameters \(w_0, w_1, \) and \(w_2 \)? Elaborate calculations should not be necessary.

Note that \(\phi_2(x) \) is zero for the data points where \(x = -1.5 \) and \(x = +1.5 \). So the value of \(w_2 \) will not affect the value of \(y(x, w) \) at these points. It can therefore be used to fit the two data points at \(x = 0 \) (where \(\phi(x) = 1 \)) as well as possible, regardless of what \(w_0 \) and \(w_1 \) are. This in turn means that we can use \(w_0 \) and \(w_1 \) to fit the two data points at \(x = -1.5 \) and \(x = +1.5 \). Looking at the line joining these two points, we see that the intercept is \(-1/2\) and the slope is \(-1/3\). We will therefore fit these points exactly if we use \(w_0 = -1/2 \) and \(w_1 = -1/3 \). Choosing \(w_2 = 1.75 \) will then lead to \(y(0, w) = 1.25 \), which is the best value we can have for fitting the two data points at \(x = 0 \).
Question 4: [20 marks] Consider the Poisson model, with unknown positive parameter λ, for a random variable, X, that takes on non-negative integer values:

$$P(X = x) = \frac{\lambda^x}{x!} \exp(-\lambda)$$

Show how this model can be expressed in the exponential family form, with a natural parameter η, a sufficient statistic $u(x)$, and functions $h(x)$ and $g(\eta)$, so that the probability for a value x has the form

$$P(X = x) = h(x)g(\eta)\exp(\eta^T u(x))$$

We can let $\eta = \log \lambda$ and $u(x) = x$. The probability function can then be written as

$$P(X = x) = (1/x!) \exp(-\exp(\eta)) \exp(\eta u(x))$$

so $h(x) = 1/x!$ and $g(\eta) = \exp(-\exp(\eta))$.
