More on the EM algorithm

Continue reading Chapter 9 in the text by Bishop



The EM Algorthim for Gaussian Mixture Models

Recall from last lecture the EM algorithm for a Gaussian mixture model with >

being diagonal, with diagonal elements of 01% i

The algorithm alternates between “E” steps and “M” steps:

E Step: Using the current values of the parameters, compute the

“responsibilities” of components for data items, by applying Bayes’ Rule:
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M Step: Using the current responsibilities, re-estimate the parameters, using

weighted averages, with weights given by the responsibilities:
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We start with some initial guess at the parameter values (perhaps random), or
perhaps with some initial guess at the responsibilities (in which case we start with

an M step). We continue alternating E and M steps until there is little change.



The EM Algorithm in General

Consider model for observed data x (which might be a vector of n independent
items) that is accompanied by a latent (unobserved) z (also possibly a vector of n
independent values). A model with parameters 6 describes the joint distribution
of x and z, as P(x, z|0).

We want to estimate 8 by maximum likelihood, which means finding the 6 that

P(x|0) ZP x, z|0)

(This assumes z is discrete; if it’s continuous the sum is replaced by an integral.)

maximizes

We assume that this isn’t easy. But suppose that we can easily find the 6 that
maximizes P(x, z|f), for any known = and z. We try to use (something related to)

this capability in an iterative algorithm for maximizing P(x|6).



The EM Algorithm in General — Details

The general EM algorithm alternates these steps:

E Step: Using the current value of the parameter, 8, find the distribution, (), for

the latent z, given the observed x:
Q(z) = P(z|z,0)

M Step: Maximize the expected value of log P(z, z|f) with respect to 6, where
the expectation is with respect to the distribution () found in the E step:

§ = argmax Eg|log P(z,z|0)]
0

For many models (specifically, those in the “exponential family”), maximizing

Eg|log P(z, z|0)] will be feasible if maximizing log P(z, z|6) for known z is feasible.



Justification of the EM algorithm

To see that the EM algorithm maximizes (at least locally) the log likelihood,

consider the following function of the distribution () over z and the parameters 6:
F(Q,0) = EgllogP(x,z2]0)] — EqllogQ(2)]
— log P(al0) + Egllog P(],6)] — Eqllog Q(=)
= log P(z]0) — Eq[log(Q(2)/P(z|z,0))

The final term above is the “Kullback-Leibler (KL) divergence” between the
distribution Q(z) and the distribution P(z|z,#). One can show that this

divergence is always non-negative, and is zero only when Q(z) = P(z|z,6).
We can now justify the EM algorithm by showing that

a) The E step maximizes F(Q, ) with respect to () — a consequence of KL
divergence being minimized when Q(z) = P(z|z,0).

b) The M step maximizes F(Q, f) with respect to § — clear since Eg[log Q(z)]
doesn’t depend on 6.

c) The maximum of F(Q,#) occurs at a # that maximizes P(x|f#) — if instead
P(x|0*) > P(x|0) for some 0*, then F(Q*,0%) > F(Q,0) with Q*(z) = P(z|z, 0%).



How this Translates to the Mixture Version

For the mixture example, the model parameters are 6 = (7, u, o).

We'll let the latent variables be z;;. = 1 if data item ¢ comes from component k,

and 0 otherwise.

In the E step, we find the distribution of the z;; given x; and the model
parameters. It turns out that all we actually need from this distribution is the
expected value of each z;; (same as the probability that z;z = 1), which we define

to be 71, and find by Bayes’ Rule as shown before.
N

In the M step, we need to maximize EQ< > log P(x;, 22\9))
i=1

Suppose we knew the value of both x; and z; = (2;1, ..., z;x) for data item 1.
The log probability (dropping constant factors) for that item can be written as
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Note that all but one factor in the outer product will have the value one.

We maximize the expected value of the sum of the above for all ¢, with respect to

the distribution of z; found in the E step. We’ll see how this works out next. ..



Details of the Mixture Version of EM

Taking the expectation of the log probability of data item ¢ with respect to the
distribution of z; (denoted by @), we get
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where r;; = Eg(z;;). To maximize the sum of the above for all ¢, we separately
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respect to each py;, and finally —3 Z Tik (log(akj) + (xij—,ukj)2/o'£j> with
=1

respect to each o2.. This gives the algorithm presented earlier.
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