More on the EM algorithm

Continue reading Chapter 9 in the text by Bishop
The EM Algorithm for Gaussian Mixture Models

Recall from last lecture the EM algorithm for a Gaussian mixture model with Σ_k being diagonal, with diagonal elements of σ_{kj}^2.

The algorithm alternates between “E” steps and “M” steps:

E Step: Using the current values of the parameters, compute the “responsibilities” of components for data items, by applying Bayes’ Rule:

$$r_{ik} = P(\text{data item } i \text{ came from component } k \mid x_i) = \frac{\pi_k N(x_i \mid \mu_k, \Sigma_k)}{\sum_{k'} \pi_{k'} N(x_i \mid \mu_{k'}, \Sigma_{k'})}$$

M Step: Using the current responsibilities, re-estimate the parameters, using weighted averages, with weights given by the responsibilities:

$$\pi_k = \frac{1}{N} \sum_i r_{ik}, \quad \mu_k = \frac{\sum_i r_{ik} x_i}{\sum_i r_{ik}}, \quad \sigma_k^2 = \frac{\sum_i r_{ik} (x_i - \mu_k)^2}{\sum_i r_{ik}}$$

We start with some initial guess at the parameter values (perhaps random), or perhaps with some initial guess at the responsibilities (in which case we start with an M step). We continue alternating E and M steps until there is little change.
The EM Algorithm in General

Consider model for observed data x (which might be a vector of n independent items) that is accompanied by a latent (unobserved) z (also possibly a vector of n independent values). A model with parameters θ describes the joint distribution of x and z, as $P(x, z|\theta)$.

We want to estimate θ by maximum likelihood, which means finding the θ that maximizes

$$P(x|\theta) = \sum_{z} P(x, z|\theta)$$

(This assumes z is discrete; if it’s continuous the sum is replaced by an integral.) We assume that this isn’t easy. But suppose that we can easily find the θ that maximizes $P(x, z|\theta)$, for any known x and z. We try to use (something related to) this capability in an iterative algorithm for maximizing $P(x|\theta)$.
The EM Algorithm in General — Details

The general EM algorithm alternates these steps:

E Step: Using the current value of the parameter, θ, find the distribution, Q, for the latent z, given the observed x:

$$Q(z) = P(z|x, \theta)$$

M Step: Maximize the expected value of $\log P(x, z|\theta)$ with respect to θ, where the expectation is with respect to the distribution Q found in the E step:

$$\theta = \arg \max_{\theta} E_Q[\log P(x, z|\theta)]$$

For many models (specifically, those in the “exponential family”), maximizing $E_Q[\log P(x, z|\theta)]$ will be feasible if maximizing $\log P(x, z|\theta)$ for known z is feasible.
Justification of the EM algorithm

To see that the EM algorithm maximizes (at least locally) the log likelihood, consider the following function of the distribution Q over z and the parameters θ:

$$F(Q, \theta) = E_Q[\log P(x, z|\theta)] - E_Q[\log Q(z)]$$

$$= \log P(x|\theta) + E_Q[\log P(z|x, \theta)] - E_Q[\log Q(z)]$$

$$= \log P(x|\theta) - E_Q[\log(Q(z)/P(z|x, \theta))]$$

The final term above is the “Kullback-Leibler (KL) divergence” between the distribution $Q(z)$ and the distribution $P(z|x, \theta)$. One can show that this divergence is always non-negative, and is zero only when $Q(z) = P(z|x, \theta)$.

We can now justify the EM algorithm by showing that

a) The E step maximizes $F(Q, \theta)$ with respect to Q — a consequence of KL divergence being minimized when $Q(z) = P(z|x, \theta)$.

b) The M step maximizes $F(Q, \theta)$ with respect to θ — clear since $E_Q[\log Q(z)]$ doesn’t depend on θ.

c) The maximum of $F(Q, \theta)$ occurs at a θ that maximizes $P(x|\theta)$ — if instead $P(x|\theta^*) > P(x|\theta)$ for some θ^*, then $F(Q^*, \theta^*) > F(Q, \theta)$ with $Q^*(z) = P(z|x, \theta^*)$.

How this Translates to the Mixture Version

For the mixture example, the model parameters are $\theta = (\pi, \mu, \sigma)$.

We’ll let the latent variables be $z_{ik} = 1$ if data item i comes from component k, and 0 otherwise.

In the E step, we find the distribution of the z_{ik} given x_i and the model parameters. It turns out that all we actually need from this distribution is the expected value of each z_{ik} (same as the probability that $z_{ik} = 1$), which we define to be r_{ik}, and find by Bayes’ Rule as shown before.

In the M step, we need to maximize $E_Q \left(\sum_{i=1}^{N} \log P(x_i, z_i | \theta) \right)$.

Suppose we knew the value of both x_i and $z_i = (z_{i1}, \ldots, z_{iK})$ for data item i. The log probability (dropping constant factors) for that item can be written as

$$
\log \left[\prod_{k=1}^{K} \left(\pi_k \prod_{j=1}^{D} \left(\frac{1}{\sigma_{kj}} \exp\left(-\frac{1}{2}(x_{ij} - \mu_{kj})^2 / \sigma_{kj}^2 \right) \right) \right)^{z_{ik}} \right]
$$

Note that all but one factor in the outer product will have the value one.

We maximize the expected value of the sum of the above for all i, with respect to the distribution of z_i found in the E step. We’ll see how this works out next...
Details of the Mixture Version of EM

Taking the expectation of the log probability of data item i with respect to the distribution of z_i (denoted by Q), we get

$$E_Q \left\{ \log \left[\prod_{k=1}^{K} \left(\prod_{j=1}^{D} \left(\frac{1}{\sigma_{k,j}} \exp\left(-\frac{1}{2}(x_{ij} - \mu_{k,j})^2 / \sigma_{k,j}^2 \right) \right) \right)^{z_{ik}} \right] \right\}$$

$$= E_Q \left\{ \sum_{k=1}^{K} z_{ik} \left(\log(\pi_k) - \frac{1}{2} \sum_{j=1}^{D} \left(\log(\sigma_{k,j}^2) + (x_{ij} - \mu_{k,j})^2 / \sigma_{k,j}^2 \right) \right) \right\}$$

$$= \sum_{k=1}^{K} r_{ik} \left(\log(\pi_k) - \frac{1}{2} \sum_{j=1}^{D} \left(\log(\sigma_{k,j}^2) + (x_{ij} - \mu_{k,j})^2 / \sigma_{k,j}^2 \right) \right)$$

where $r_{ik} = E_Q(z_{ik})$. To maximize the sum of the above for all i, we separately maximize $\sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \log(\pi_k)$ with respect to π, and $-\frac{1}{2} \sum_{i=1}^{N} r_{ik} (x_{ij} - \mu_{k,j})^2$ with respect to each $\mu_{k,j}$, and finally $-\frac{1}{2} \sum_{i=1}^{N} r_{ik} \left(\log(\sigma_{k,j}^2) + (x_{ij} - \mu_{k,j})^2 / \sigma_{k,j}^2 \right)$ with respect to each $\sigma_{k,j}^2$. This gives the algorithm presented earlier.