
More on the EM algorithm

Continue reading Chapter 9 in the text by Bishop



The EM Algorthim for Gaussian Mixture Models

Recall from last lecture the EM algorithm for a Gaussian mixture model with Σk

being diagonal, with diagonal elements of σ2

kj .

The algorithm alternates between “E” steps and “M” steps:

E Step: Using the current values of the parameters, compute the

“responsibilities” of components for data items, by applying Bayes’ Rule:

rik = P (data item i came from component k |xi) =
πk N(xi|µk, Σk)

∑

k′

πk′ N(xi|µk′ , Σk′)

M Step: Using the current responsibilities, re-estimate the parameters, using

weighted averages, with weights given by the responsibilities:
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We start with some initial guess at the parameter values (perhaps random), or

perhaps with some initial guess at the responsibilities (in which case we start with

an M step). We continue alternating E and M steps until there is little change.



The EM Algorithm in General

Consider model for observed data x (which might be a vector of n independent

items) that is accompanied by a latent (unobserved) z (also possibly a vector of n

independent values). A model with parameters θ describes the joint distribution

of x and z, as P (x, z|θ).

We want to estimate θ by maximum likelihood, which means finding the θ that

maximizes

P (x|θ) =
∑

z

P (x, z|θ)

(This assumes z is discrete; if it’s continuous the sum is replaced by an integral.)

We assume that this isn’t easy. But suppose that we can easily find the θ that

maximizes P (x, z|θ), for any known x and z. We try to use (something related to)

this capability in an iterative algorithm for maximizing P (x|θ).



The EM Algorithm in General — Details

The general EM algorithm alternates these steps:

E Step: Using the current value of the parameter, θ, find the distribution, Q, for

the latent z, given the observed x:

Q(z) = P (z|x, θ)

M Step: Maximize the expected value of log P (x, z|θ) with respect to θ, where

the expectation is with respect to the distribution Q found in the E step:

θ = arg max
θ

EQ[log P (x, z|θ)]

For many models (specifically, those in the “exponential family”), maximizing

EQ[log P (x, z|θ)] will be feasible if maximizing log P (x, z|θ) for known z is feasible.



Justification of the EM algorithm

To see that the EM algorithm maximizes (at least locally) the log likelihood,

consider the following function of the distribution Q over z and the parameters θ:

F (Q, θ) = EQ[log P (x, z|θ)] − EQ[log Q(z)]

= log P (x|θ) + EQ[log P (z|x, θ)] − EQ[log Q(z)]

= log P (x|θ) − EQ[log(Q(z)/P (z|x, θ))]

The final term above is the “Kullback-Leibler (KL) divergence” between the

distribution Q(z) and the distribution P (z|x, θ). One can show that this

divergence is always non-negative, and is zero only when Q(z) = P (z|x, θ).

We can now justify the EM algorithm by showing that

a) The E step maximizes F (Q, θ) with respect to Q — a consequence of KL

divergence being minimized when Q(z) = P (z|x, θ).

b) The M step maximizes F (Q, θ) with respect to θ — clear since EQ[log Q(z)]

doesn’t depend on θ.

c) The maximum of F (Q, θ) occurs at a θ that maximizes P (x|θ) — if instead

P (x|θ∗) > P (x|θ) for some θ∗, then F (Q∗, θ∗) > F (Q, θ) with Q∗(z) = P (z|x, θ∗).



How this Translates to the Mixture Version

For the mixture example, the model parameters are θ = (π, µ, σ).

We’ll let the latent variables be zik = 1 if data item i comes from component k,

and 0 otherwise.

In the E step, we find the distribution of the zik given xi and the model

parameters. It turns out that all we actually need from this distribution is the

expected value of each zik (same as the probability that zik = 1), which we define

to be rik, and find by Bayes’ Rule as shown before.

In the M step, we need to maximize EQ

( N
∑

i=1

log P (xi, zi|θ)
)

.

Suppose we knew the value of both xi and zi = (zi1, . . . , ziK) for data item i.

The log probability (dropping constant factors) for that item can be written as
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Note that all but one factor in the outer product will have the value one.

We maximize the expected value of the sum of the above for all i, with respect to

the distribution of zi found in the E step. We’ll see how this works out next. . .



Details of the Mixture Version of EM

Taking the expectation of the log probability of data item i with respect to the

distribution of zi (denoted by Q), we get
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where rik = EQ(zik). To maximize the sum of the above for all i, we separately

maximize
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respect to each σ2

kj . This gives the algorithm presented earlier.


