
Modeling Data with Linear Combinations of Basis Functions

Read Chapter 3 in the text by Bishop



A Type of Supervised Learning Problem

We want to model data (x1, t1), . . . , (xN , tN ), where xi is a vector of D inputs

(predictors) for case i, and ti is the target (response) variable for case i, which is

real-valued.

We are trying to predict t from x, for some future test case, but we are not trying

to model the distribution of x.

Suppose also that we don’t expect the best predictor for t to be a linear function

of x, so ordinary linear regression on the original variables won’t work well.

We need to allow for a non-linear function of x, but we don’t have any theory

that says what form this function should take. What to do?



An Example Problem

As an illustration, we can use the synthetic data set looked at last lecture — 50

points generated with x uniform from (0, 1) and y set by the formula:

y = sin(1 + x2) + noise

where the noise has N(0, 0.032) distribution.
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true function and data points

The noise-free true function, sin(1 + x2), is shown by the line.

This is simpler than real machine learning problems, but lets us look at plots...



Linear Basis Function Models

We earlier looked at fitting this data by least-squares linear regression, using not

just x, but also x2, x3, etc., up to (say) x4 as predictors.

This is an example of a linear basis function model.

In general, we do linear regression of t on φ1(x), φ2(x), . . . , φM−1(x), where the

φj are basis functions, that we have selected to allow for a non-linear function of x.

This gives the following model:

t = y(x, w) + noise

y(x, w) = w0 +
M−1∑

j=1

wjφj(x) = wT φ(x)

where w is the vector of all M regression coefficients (including the intercept, w0)

and φ(x) is the vector of all basis function values at input x, including φ0(x) = 1

for the intercept.



Maximum Likelihood Estimation

Suppose we assume that the noise in the regression model is Gaussian (normal)

with mean zero and some variance σ2. (The text uses β to denote 1/σ2.)

With this assumption, we can write down the likelihood function for the

parameters w and σ, which is the joint probability density of all the targets in the

training set as a function of w and σ:

L(w, σ) = P (t1, . . . , tN |x1, . . . , xN , w, σ)

=

N∏

i=1

N(ti|w
T φ(xi), σ

2)

where N(t|µ, σ2) is the density for t under a normal distribution with mean µ and

variance σ2.

The maximum likelihood estimates for the parameters are the values of w and σ

that maximize this likelihood. Equivalently, they maximize the log likelihood,

which, ignoring terms that don’t depend on w or σ, is

log L(w, σ) = −N log(σ) −
1

2σ2

N∑

i=1

(ti − wT φ(xi))
2



Least Squares Estimation

From this log likelihood function, we see that regardless of what σ might be, the

maximum likelihood estimate of w is the value that minimizes the sum of squared

prediction errors over training cases.

Let’s put the values of all basis functions in all training cases into a matrix Φ,

with Φij = φj(xi). Also, put the target values for all training cases into a vector t.

We can now write the sum of squared errors on training cases as

||t − Φw||2 = (t − Φw)T (t − Φw)

This is minimized for the value of w where its gradient is zero, which is where

−2ΦT (t − Φw) = 0

Solving this, the least squares estimate of w is

ŵ = (ΦT Φ)−1ΦT t

This assumes that ΦT Φ is non-singular, so that there is a unique solution.

When M is greater than N , this will not be the case!



Results with Polynomial Basis Functions

Recall we looked before at least-squares fits of polynomial models with increasing

order, which can be viewed as basis function models with φj(x) = xj .
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second−order polynomial model
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fourth−order polynomial model
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sixth−order polynomial model

The gray line is the true noise-free function. We see that a second-order fit is too

simple, but a sixth-order fit is too complex, producing “overfitting”.



Gaussian Basis Functions

Polynomials are global basis functions, each affecting the prediction over the

whole input space. Often, local basis functions are more appropriate. One

possibility is to use functions proportional to Gaussian probability densities:

φj(x) = exp(−(x − µj)
2/2s2)

Here are these basis functions for s = 0.1, with the µj on a grid with spacing s:
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Gaussian basis functions, s = 0.1



Results with Gaussian Basis Functions

Here are the results using Gaussian basis functions (plus φ0(x) = 1) on the

example dataset, with varying width (and spacing) s:
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Gaussian basis function fit, s = 0.1
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Gaussian basis function fit, s = 0.5
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Gaussian basis function fit, s = 2.5

The estimated values for the wj are not what you might guess. For the middle

model above, they are as follows:

6856.5 -3544.1 -2473.7 -2859.8 -2637.7 -2861.5 -2468.0 -3558.4


