
STA 414/2104, Spring 2012, Practice Problem Set #1

Note: these problems are not for credit, and not to be handed in

Question 1: Consider a classification problem in which there are two real-valued inputs, x1 and
x2, and a binary (0/1) target (class) variable, y. There are 20 training cases, plotted below. Cases
where y = 1 are plotted as black dots, cases where y = 0 as white dots, with the location of the dot
giving the inputs, x1 and x2, for that training case.
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A) Estimate the error rate of the one-nearest-neighbor (1-NN) classifier for this problem using
leave-one-out cross validation. (Ie, S-fold cross validation with S equal to the number of
training cases, in which each training case is predicted using all the other training cases.)

B) Suppose we use the three-nearest-neightbor (3-NN) method to estimate the probability that
a test case is in class 1. For test cases with each of the following sets of input values, find the
estimated probability of class 1.

x1 = 1, x2 = 1

x1 = 2, x2 = 2

x1 = 3, x2 = 0

Question 2: Consider a linear basis function regression model, with one input and the following
three basis functions:

φ0(x) = 1

φ1(x) = x

φ2(x) =

{

1 − x2 if |x| < 1

0 if |x| ≥ 1
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The model for the target variable, y, is that P (y |x, β) = N(y | f(x, β), 1), where

f(x, β) =
m−1
∑

j=0

βjφj(x)

Suppose we have four data points, as plotted below:
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What is the maximum likelihood (least squares) estimate for the parameters β0, β1, and β2? Elab-
orate calculations should not be necessary.

Question 3: Answer the following questions about linear basis function models, as fitted by least
squares or penalized least squares.

Recall that the linear basis function model (for one case) has the form

y = f(x, β) + noise

f(x, β) = β0 +
m−1
∑

j=1

βjφj(x) = βT φ(x)

and that the least squares estimate for β is β̂ = (ΦT Φ)−1ΦT y, where Φ is the n×m matrix of basis
function values for the n training cases, and y is the vector of target values in these training cases.

A) Is there always a unique least squares estimate for β (for any data, and any set of basis
functions)?

B) Is there always a unique penalized least squares estimate for β (for any data, and any set of

basis functions), if the penalty is λ
m−1
∑

j=0

β2

j , with λ > 0? (Note that the penalty includes β0.)

C) Suppose that there is only one input (so x is a scalar), and that φ0(x) = 1 and φj(x) for
j = 1, . . . , m − 1 are Gaussian basis functions. Suppose we estimate β by penalized least

squares, with penalty function λ
m−1
∑

j=1

β2

j . As λ gets bigger and bigger, what do the predictions

for test cases approach? (Note that the penalty does not include β0.)
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Question 4: Below is a plot of a dataset of n = 3 observations of (xi, yi) pairs:
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In other words, the data points are (0, 1), (2, 3), (4, 2).

Suppose we model this data with a linear basis function model with m = 2 basis functions given by
φ0(x) = 1 and φ1(x) = x. We use a quadratic penalty of the form λβ2

1
, which penalizes only the

regression coefficient for φ1(x), not that for φ0(x).

Suppose we use squared error from three-fold cross-validation (ie, with each validation set having
only one case) to choose the value of λ. Suppose we consider only two values for λ — one very close
to zero, and one very large. For the data above, will we choose λ near zero, or λ that is very big?

Question 5: Suppose that we observe a binary (0/1) variable, Y1. We do not know the probability,
θ, that Y1 will be 1, but we have a prior distribution for θ, that has the following density function
on the interval (0, 1):

P (θ) = 12
(

θ −
1

2

)
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A) Find as simple a formula as you can for the density function of the posterior distribution of θ
given that we observe Y1 = 1. Your formula should give the correcty normalized density.

B) Suppose that Y2 is a future observation, that is independent of Y1 given θ. Find the predictive
probability that Y2 = 1 given that Y1 = 1 — ie, find P (Y2 = 1 |Y1 = 1).

Question 6: Let X1, X2, X3, . . . for a sequence of binary (0/1) random variables. Given a value
for θ, these random variables are independent, and P (Xi = 1) = θ for all i. Suppose that we are
sure that θ is at least 1/2, and that our prior distribution for θ for values 1/2 and above is uniform
on the interval [1/2, 1]. We have observed that X1 = 0, but don’t know the values of any other Xi.
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A) Write down the likelihood function for θ, based on the observation X1 = 0.

B) Find an expression for the posterior probability density function of θ given X1 = 0, simplified
as much as possible, with the correct normalizing constant included.

C) Find the predictive probability that X2 = 1 given that X1 = 0.

D) Find the probability that X2 = X3 given that X1 = 0.

Question 7: Answer the following questions about Bayesian inference for linear basis function
models. Recall that if the noise variance is σ2, and the prior distribution for β is Gaussian with
mean zero and covariance matrix S0, the posterior distribution for β is Gaussian with mean mn and
covariance matrix Sn that can be written as follows:

Sn =
[

S−1

0
+ (1/σ2)ΦT Φ

]

−1

, mn = SnΦT t/σ2

and the marginal likelihood for the model is

−
n

2
log(2π) −

n

2
log(σ2) −

1

2
log

( |S0|

|Sn|

)

−
1

2
||t − Φmn)||2/σ2 −

1

2
mT

nS−1

0
mn

For the questions below, assume that S0 = ω2I, for some positive ω.

A) Suppose we set the noise variance, σ2, to be bigger and bigger, while fixing other aspects of
the model. What will be the limiting values of the the posterior mean and covariance matrix?

B) Suppose we set ω2, the prior variance of the βj , to be bigger and bigger, while fixing other
aspects of the model. What will be the limiting values of the the posterior mean, mn, and
covariance matrix, Sn?

C) Suppose we set ω2 to be bigger and bigger while fixing other aspects of the model. What will
be the limiting value of the marginal likelihood?

D) Suppose there is only one input (so x is a scalar), and the basis functions are φj(x) = xj , for
j = 0, . . . , m− 1. The Bayesian mean prediction for the value of y in a test case with input x
is found by integrating the prediction based on β (ie, the expected value of y given x and β)
with respect to the posterior distribution of β. Will this final mean prediction be a polynomial
function of x?
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