
STA 414/2104, Spring 2012, Practice Problem Set #2, Answers (partial, more to come)

Note: these problems are not for credit, and not to be handed in

Question 1: Recall that a multilayer perceptron network with m hidden units using the tanh
activation function computes a function defined as follows:

f(x, w) = w
(2)
0 +

m
∑

j=1

w
(2)
j φj(x, w), φj(x, w) = tanh

(

w
(1)
0j +

p
∑

k=1

w
(1)
kj xk

)

where w is the set of parameters (weights) for the network, and x is the vector of p inputs to the
network.

Suppose we train such a network with m = 1 hidden units on the following set of n = 4 training
cases, with p = 1 input, x1, and one real-valued response, y:

x1 y

−1 1
0 1
1 5
2 5

We use a Gaussian model for the response, in which y given x has a Gaussian distribution with
mean y(x, w) and variance one.

a) Suppose that we initialize the weights to w
(1)
01 = 0, w

(1)
11 = 0, w

(2)
0 = 0, and w

(2)
1 = 0.1.

Define E(w) to be the minus the log likelihood, dropping terms that don’t depend on w,
so that E(w) is 1/2 times the sum of the squares of the residuals in the four training cases.

Find the gradient of E(w), as would be needed to do gradient descent learning, evaluated
at the initial value of w specified above. In other words, find the partial derivatives of E
with respect to all the components of w, at the initial value of w.

With these initial weights, the hidden unit has the value 0, and the output of the network
will also be 0, for all training cases.

We can split E(w) into a sum over training cases, as E(w) = E1(w) + E2(w) + E3(w) +
E4(w), with Ei(w) = (yi − f(xi, w))2/2. With the initial weights, the derivatives of each
Ei with respect to the network output is −(yi − 0) = −yi. Working backwards, we see that

the derivative of Ei with respect to the hidden unit value is w
(2)
1 (−yi) = −0.1yi. Since the

hidden unit input is zero for all training cases, where the derivative of tanh is one, this is
also the derivative of Ei with respect to the hidden unit input.

We can use these results to find the derivatives of Ei with respect the the weights:

∂Ei/∂w
(2)
0 = −yi

∂Ei/∂w
(2)
1 = −yi × 0 = 0

∂Ei/∂w
(1)
0 = −0.1yi

∂Ei/∂w
(1)
1 = −0.1yixi
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Adding these up for all training cases, we get

∂E/∂w
(2)
0 = −(1 + 1 + 5 + 5) = −12

∂E/∂w
(2)
1 = 0

∂E/∂w
(1)
0 = −0.1(1 + 1 + 5 + 5) = −1.2

∂E/∂w
(1)
1 = −0.1(1(−1) + 1(0) + 5(1) + 5(2)) = −1.4

b) If gradient descent learning to minimize minus the log likelihood is done from the initial
weights specified in part (a) above, what weights will the learning converge to (assuming
that the learning rate used is small enough to ensure stability)? You may not be able to
say exactly what the values of all the weights will be, but say as much as you can.

The network can only fit a shifted and scaled tanh function to the data. Such a function

can fit this data exactly in the limit as w
(1)
1 goes to infinity, or minus infinity, as that can

turn the tanh function into a step function, which goes from 1 for x ≤ 0 to 5 for x ≥ 1.

With any finite value for w
(1)
1 , the best fit will be when the step occurs half-way between 0

and 1, at x = 1/2. There are two such solutions:

w
(1)
1 = large positive value

w
(1)
0 = −w

(1)
1 /2

w
(2)
1 = 2

w
(2)
0 = 3

and

w
(1)
1 = large negative value

w
(1)
0 = −w

(1)
1 /2

w
(2)
1 = −2

w
(2)
0 = 3

We can see from part (a) that gradient descent from the initial weights given will push the

weights towards the first of these solutions, though it’s possible that the value of w
(1)
0 won’t

be exactly as shown above, if w
(1)
1 grows fast enough that the exact location of the step

doesn’t matter.

c) Suppose that gradient descent learning is done from the initial weights in part (a), but with

a penalty of λ[w
(1)
11 ]2 added to minus the log likelihood. If λ is a small positive number,

what will the learning converge to (assuming that the learning rate used is small enough
to ensure stability)? You may not be able to say exactly what the values of all the weights
will be, but say as much as you can.

The answer is the same as for part (b), except that w
(1)
1 will not go to infinity, but just

some large value, and w
(1)
0 will therefore be guaranteed to converge to −w

(1)
1 /2.
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Question 2: Below are five functions randomly drawn from five different Gaussian processes.
For all five Gaussian processes, the mean function is zero. The covariance functions are one of
those listed below.

a)

−3 −2 −1 0 1 2 3

−
1.

0
0.

0
1.

0

b)

−3 −2 −1 0 1 2 3

−
10

−
5

0

c)

−3 −2 −1 0 1 2 3

−
6

−
2

2
4

d)

−3 −2 −1 0 1 2 3

−
1.

0
0.

0
1.

0

e)

−3 −2 −1 0 1 2 3

−
2

2
6

10

For each of the five covariance functions below, indicate which of the five functions above is most
likely to have been drawn from the Gaussian process with that covariance function.

1) Cov(yi1 , yi2) = 0.52 exp(− ((xi1 − xi2) / 0.5)2 )

Answer: (d)

2) Cov(yi1 , yi2) = xi1 xi2

Answer: (a)

3) Cov(yi1 , yi2) = 52 + 52 xi1 xi2 + 0.52 exp(− ((xi1 − xi2) / 0.1)2 )

Answer: (e)
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4) Cov(yi1 , yi2) = 0.72 exp(− ((xi1 − xi2) / 0.1)2 ) + 82 exp(− ((xi1 − xi2) / 2)2 )

Answer: (b)

5) Cov(yi1 , yi2) = 82 exp(− ((xi1 − xi2) / 5)2 )

Answer: (c)
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Question 3: Suppose we model the relationship of a real-valued response variable, y, to a single
real input, x, using a Gaussian process model in which the mean is zero and the covariances of
the observed responses are given by

Cov(yi, yi′) = 0.52δi,i′ + K(xi, xi′)

with the noise-free covariance function, K, defined by

K(x, x′) =

{

1 − |x − x′| if |x − x′| < 1

0 otherwise

Suppose we have four training cases, as follows:

x y

0.5 2.0
2.8 3.3
1.6 3.0
3.9 2.7

Recall that the conditional mean of the response in a test case with input x∗, given the responses
in the training cases, is kT C−1y, where y is the vector of training responses, C is the covariance
matrix of training responses, and k is the vector of convariances of training responses with the
response in the test case.

Find the predictive mean for the response in a test case in which the input is x∗ = 1.2.

The covariance matrix of the training responses is

C =











1 + 0.52 0 0 0
0 1 + 0.52 0 0
0 0 1 + 0.52 0
0 0 0 1 + 0.52











The inverse of this is

C−1 =











0.8 0 0 0
0 0.8 0 0
0 0 0.8 0
0 0 0 0.8











The vector of covariances of the test response with the training responses is

k =











1 − 0.7
0

1 − 0.4
0











=











0.3
0

0.6
0











So kT C−1 = [0.24 0 0.48 0], and the predictive mean for the test resp[onse is

kT C−1y = 0.24 × 2.0 + 0.48 × 3.0 = 1.92
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Question 4: Recall that for a Gaussian process model the predictive distribution for the response
y∗ in a test case with inputs x∗ has mean and variance given by

E[y∗ |x∗, training data] = kT C−1y

Var[y∗ |x∗, training data] = v − kT C−1k

where y is the vector of observed responses in training cases, C is the matrix of covariances for
the responses in training cases, k is the vector of covariances of the response in the test case with
the responses in training cases, and v is the prior variance of the response in the test case.

a) Suppose we have just one training case, with x1 = 3 and y1 = 4. Suppose also that the
noise-free covariance function is K(x, x′) = 2−|x−x′|, and the variance of the noise is 1/2.
Find the mean and variance of the predictive distribution for the response in a test case
for which the value of the input is 5.

The mean of the preditive distribution is

K(3, 5)[K(3, 3) + 1/2]−1(4) = (1/4)[1 + 1/2]−1(4) = 4/6

The variance of the predictive distribution is

[K(5, 5)+1/2]−K(3, 5)[K(3, 3)+1/2]−1K(3, 5) = [1+1/2]−(1/4)[1+1/2]−1(1/4) = 35/24

b) Repeat the calculations for (a), but using K(x, x′) = 2+|x−x′|. What can you conclude from
the result of this calculation?

The mean of the preditive distribution is

K(3, 5)[K(3, 3) + 1/2]−1(4) = (4)[1 + 1/2]−1(4) = 32/3

The variance of the predictive distribution is

[K(5, 5)+1/2]−K(3, 5)[K(3, 3)+1/2]−1K(3, 5) = [1+1/2]− (4)[1+1/2]−1(4) = −55/6

But variances cannot be negative! We can conclude that K(x, x′) = 2+|x−x′| is not a valid
covariance function — it is not positive semi-definite.
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Question 5: Consider a binary classification problem in which two inputs are available for
predicting the class — input x1, which is binary, and input x2, which is real-valued. Suppose we
use a naive Bayes model in which x1 and x2 are assumed to be independent within each class.
Let P (x1 = 1 |C0) = θ0 and P (x1 = 1 |C1) = θ1, and assume that x2|C0 ∼ N(µ0, σ

2) and
x2|C1 ∼ N(µ1, σ

2), where θ0, θ1, µ0, µ1, and σ are parameters to be estimated from the training
data.

Supposing that these parameters have been estimated, as θ̂0, θ̂1, µ̂0, µ̂1, and σ̂, and that some
estimate for the “prior” probability of class 1, P (C1) is available, work out an expression for the
probability of class 1 for a test case with inputs (x∗

1, x
∗
2).

The odds in favour of class C1 will be

P (C1|x
∗
1, x

∗
2)

P (C0|x∗
1, x

∗
2)

=
P (C1)

P (C0)

P (x∗
1|C1)

P (x∗
1|C0)

P (x∗
2|C1)

P (x∗
2|C0)

=
P (C1)

P (C0)

θ
x∗

1

1 (1−θ1)
1−x∗

1

θ
x∗

1

0 (1−θ0)
1−x∗

1

(2π)−1/2σ−1 exp(−(x∗
2 − µ1)/2σ2)

(2π)−1/2σ−1 exp(−(x∗
2 − µ0)/2σ2)

=
P (C1)

P (C0)

(

θ1

θ0

)x∗

1

(

1−θ1

1−θ0

)1−x∗

1 exp(−((x∗
2)

2 − 2µ1x
∗
2 + µ2

1)/2σ2)

exp(−((x∗
2)

2 − 2µ0x∗
2 + µ2

0)/2σ2)

=
P (C1)

P (C0)

(

θ1

θ0

)x∗

1

(

1−θ1

1−θ0

)1−x∗

1 exp(µ1x
∗
2/σ2 − µ2

1/2σ2)

exp(µ0x∗
2/σ2 − µ2

0/2σ2)

The log odds, which we’ll call a(x∗), will therefore be

a(x∗) = log

(

P (C1|x
∗
1, x

∗
2)

P (C0|x∗
1, x

∗
2)

)

= log

(

P (C1)

P (C0)

)

+ log

(

1−θ1

1−θ0

)

+ (µ2
0 − µ2

1)/2σ2 + x∗
1

[

log

(

θ1/(1−θ1)

θ0/(1−θ0)

)

+ (µ1 − µ0) / σ2
]

The probability of class 1 can then be written as 1/(1 + exp(−a(x∗))).
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Question 6: Recall that the maximum margin separating hyperplane, defined by wT x + b = 0,
can be found by solving the following optimiziation problem:

minimize ||w||2, subject to yi(w
T xi + b) ≥ 1 for i = 1, . . . , n

Use this to find the maximum margin hyperplane for the following n = 3 data points, (x, y), in
which x is one-dimensional:

(−1,−1), (2, +1), (3, +1)

(Note that a separating “hyperplane” when x is one-dimensional is a single point.)

You should produce a two-dimensional plot of the linear inequality constraints on w and b, and
from this find the minimum of ||w||2. You should then plot the function wx + b, verify that the
point where wx + b = 0 separates the classes, and find its margin.

The inequality constraints are as follows:

(−1)(w(−1) + b) = w − b ≥ 1

(+1)(w(2) + b) = 2w + b ≥ 1

(+1)(w(3) + b) = 3w + b ≥ 1

which are equivalent to

b ≤ −1 + w

b ≥ 1 − 2w

b ≥ 1 − 3w

These are plotted below, with the shaded area being disallowed by the constraints:

−1

+2

+1

+1 +2
w

b

The minimum allowed value for w2 is at w = 2/3 and b = −1/3.
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Here is a plot of wx + b with w = 2/3 and b = −1/3, showing the training cases.

x0

+1

−1
−1 0 +1 +2 +3

The separating point is at x = 1/2, with margin of ±3/2 around that point.
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