
STA 414/2104 — Answers to Third Test — 2012-04-05

Question 1: [ 30 marks total ] We have two i.i.d. observations of seven variables, as follows:

5 7 8 2 3 5 2

3 3 6 6 1 1 0

a) [ 20 marks ] Find a 7-dimensional vector of length one that points in the direction of the first
principal component of this data. Explain how you obtained it.

First, we subtract the sample means from the two observed vectors, giving the following centred
data:

1 2 1 −2 1 1 1
−1 −2 −1 2 −1 −2 −1

With only two training cases, each of these vectors must point in the direction of the first
principal component. Taking the first, its length is 4, so one vector of length 1 in the direction
of the first principal component is

[

1

4

1

2

1

4
− 1

2

1

4

1

2

1

4

]

T

The other possible answer is the negation of the above.

It’s also possible to answer this question by computing

XXT =

[

16 −16
−16 16

]

and then finding its eigenvectors, [1 − 1]T and [1 1]T , which have eigenvalues 32 and 0. PC1
is in the direction XT [1 − 1]T . After scaling to unit length, this gives the same answer as
above.

b) [ 10 marks ] Find the projection on this principal component of the new observation shown
below:

4 1 9 3 2 2 1

Subtracting the sample means from the training data gives [ 0 − 4 2 − 1 0 − 1 0 ]T . The
dot product of this with the PC1 vector from (a) is −3/2.
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Question 2: [ 30 marks total ] Recall that in a factor analysis model an observed data point, x, is
modeled using M latent factors as

x = µ + Wz + ǫ

where µ is a vector of means for the p components of x, W is a p × M matrix, z is a vector of M
latent factors, assumed to have independent N(0, 1) distributions, and ǫ is a vector of p residuals,
assumed to be independent, and to come from normal distributions with mean zero. The variance
of ǫj is σ2

j .

Suppose that p = 5 and M = 2, and that the parameters of the model are mean µ = [0 0 0 0 0]T ,
residual standard deviations σ1 = 1, σ2 = 1, σ3 = 2, σ4 = 2, σ5 = 2, and

W =















1 2
−1 1

1 0
1 0
0 1















a) [ 20 marks ] Find the covariance matrix for x. Show your work.

Cov(x) = E[(Wz + ǫ) (Wz + ǫ)T ] = WW T + diag(σ2

1, . . . , σ
2

5)

=















6 1 1 1 2
1 3 −1 −1 1
1 −1 5 1 0
1 −1 1 5 0
2 1 0 0 5















b) [ 10 marks ] Suppose that we don’t observe vectors x of dimension five, but rather we observe
vectors y of dimension four, where y1 = x1, y2 = 3x2, y3 = −x3, and y4 = 2x4 +x5. Assuming
that the distribution of x is given by the factor analysis model with parameters above, write
down a factor analysis model (including values of its parameters) for the distribution of y.

Using the relation of y to x and the model for x above, we can write y = W ′z + ǫ′, where

W ′ =











1 2
−3 3
−1 0

2 1











The standard deviations of the ǫ′i will be σ′

1 = σ1 = 1, σ′

2 = 3σ2 = 3, σ′

3 = σ3 = 2, and

σ′

4 =
√

4σ2
4

+ σ2
5

=
√

20.
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Question 3: [ 40 marks total ] Consider a two-component Gaussian mixture model for univariate
data, in which the probability density for an observation, x, is

(1/2)N(x|µ, 1) + (1/2)N(x|µ, 22)

Here, N(x|µ, σ2) denotes the density for x under a univariate normal distribution with mean µ
and variance σ2. Notice that mixing proportions are equal for this mixture model, that the two
components have the same mean, and that the standard deviations of the two components are fixed
at 1 and 2. There is only one model parameter, µ.

Suppose we wish to estimate the µ parameter by maximum likelihood using the EM algorithm.
Answer the following questions regarding how the E step and M step of this algorithm operate, if
we have the three data points below:

4.0, 4.6, 2.0

Here is a table of standard normal probability densities that you may find useful:

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

N(x|0, 1) .40 .40 .39 .38 .37 .35 .33 .31 .29 .27 .24 .22 .19 .17 .15 .13 .11 .09 .08 .07 .05

a) [ 20 marks ] Find the responsibilities that will be computed in the E step if the model parameter
estimates from the previous M step are µ = 4, σ1 = 1, and σ2 = 2. Since the responsibilities
for the two components must add to one, it is enough to give ri1 = P (component 1 |xi) for
i = 1, 2, 3. Show your work.

First, note that the normal density function with mean µ and variance σ2 is N(x|µ, σ2) =
(1/σ)N((x − µ)/σ|0, 1). Also N(−x|0, 1) = N(x|0, 1).

Using Bayes’ Rule, we get that

P (component 1|x) =
(1/2)N(x|µ, 1)

(1/2)N(x|µ, 1) + (1/2)N(x|µ, 22)

Applying this the three observations, we get

r11 =
(1/2)0.40

(1/2)0.40 + (1/2)(1/2)0.40
= 2/3

r21 =
(1/2)0.33

(1/2)0.33 + (1/2)(1/2)0.38
= 33/52

r31 =
(1/2)0.05

(1/2)0.05 + (1/2)(1/2)0.24
= 5/17

b) [ 20 marks ] Using the responsibilities that you computed in part (a), find the estimate for µ
that will be found in the next M step. Recall that the M step maximizes the expected value of
the log of the probability density for x1, x2, x3 and the unknown component indicators, with
the expectation taken with respect to the distribution for the component indicators found in
the previous E step. Show your work. Your final answer may be an arithmetic expression
(with no symbols) rather than an actual number.
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The expected log likelihood is

3
∑

i=1

[

ri1(−(1/2)(xi − µ)2) + (1 − ri1)(−(1/2)(xi − µ)/22)
]

To find the maximum of this with respect to µ, we take the derivative with respect to µ, which
is

3
∑

i=1

[ri1(xi − µ) + (1 − ri1)(xi − µ)/4]

Setting this to zero and solving for µ gives

µ̂ =

∑

3

i=1(ri1 + (1 − ri1)/4)xi
∑

3

i=1(ri1 + (1 − ri1)/4)
=

(3/4)4.0 + (151/208)4.6 + (25/68)2.0

(3/4) + (151/208) + (25/68)
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