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Analytically-Tractable Bayesian Models



Conjugate Prior Distributions

For most Bayesian inference problems, the integrals needed to do inference and

prediction are not analytically tractable — hence the need for numerical

quadrature, Monte Carlo methods, or various approximations.

Most of the exceptions involve conjugate priors, which combine nicely with the

likelihood to give a posterior distribution of the same form. Examples:

1) Independent observations from a finite set, with Beta / Dirichlet priors.

2) Independent observations of Gaussian variables with Gaussian prior for the

mean, and either known variance or inverse-Gamma prior for the variance.

3) Linear regression with Gaussian prior for the regression coefficients, and

Gaussian noise, with known variance or inverse-Gamma prior for the variance.

It’s nice when a tractable model and prior are appropriate for the problem.

Unfortunately, people are tempted to use such models and priors even when they

aren’t appropriate.



Independent Binary Observations with Beta Prior

We observe binary (0/1) variables Y1, Y2, . . . , Yn.

We model these as being independent, and identically distributed, with

P (Yi = y | θ) =







θ if y = 1

1 − θ if y = 0







= θy (1−θ)1−y

Let’s suppose that our prior distribution for θ is Beta(a,b), with a and b being

known positive reals. With this prior, the probability density over (0, 1) of θ is:

P (θ) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1−θ)b−1

Here, the Gamma function, Γ(c), is defined to be
∫

∞

0
xc−1 exp(−x) dx. Note that

Γ(c) = (c−1)! when c is an integer.

When a = b = 1 the prior is uniform over (0, 1).

The prior mean of θ is a / (a + b). Big a and b give smaller prior variance.



Posterior Distribution with Beta Prior

With this Beta prior, the posterior distribution is also Beta:

P (θ |Y1 = y1, Y2 = y2, . . . , Yn = yn)

∝ P (θ)
n

∏

i=1

P (Yi = yi | θ)

∝ θa−1 (1−θ)b−1

n
∏

i=1

θyi (1−θ)1−yi

∝ θΣyi+a−1 (1−θ)n−Σyi+b−1

So the posterior distribution is Beta (
∑

yi + a, n −
∑

yi + b).

One way this is sometimes visualized is as the prior being equivalent to

a fictitious observations with Y = 1 and b fictitious observations with Y = 0.

Note that all that is used from the data is
∑

yi, which is a minimal sufficient

statistic, whose values are in one-to-one correspondence with possible likelihood

functions (ignoring constant factors).



Examples of Beta Priors and Posteriors
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Predictive Distribution from Beta Posterior

From the Beta (
∑

yi + a, n −
∑

yi + b) posterior distribution, we can make a

probabilistic prediction for the next observation:

P (Yn+1 = 1 |Y1 = y1, Y2 = y2, . . . , Yn = yn)

=

∫

1

0

P (Yn+1 = 1 | θ) P (θ |Y1 = y1, Y2 = y2, . . . , Yn = yn) dθ

=

∫

1

0

θ P (θ |Y1 = y1, Y2 = y2, . . . , Yn = yn) dθ

=

∫

1

0

θ
Γ(n + a + b)

Γ(Σyi + a)Γ(n − Σyi + b)
θΣyi+a−1 (1−θ)n−Σyi+b−1 dθ

=
Γ(n + a + b)

Γ(Σyi + a)Γ(n − Σyi + b)

Γ(1 + Σyi + a)Γ(n − Σyi + b)

Γ(1 + n + a + b)

=

∑

yi + a

n + a + b

This uses the fact that cΓ(c) = Γ(1 + c).



Generalizing to More Than Two Values

For i.i.d. observations with a finite number, K, of possible values, with K > 2, the

conjugate prior for the probabilities θ1, . . . , θK is the Dirichlet distribution, with

the following density on the simplex where all θk > 0 and
∑

θk = 1:

P (θ1, . . . , θK) =
Γ(Σkαk)

Πk Γ(αk)

K
∏

k=1

θαk−1

k

The parameters α1, . . . , αK can be any positive reals.

The posterior distribution after observing n items, with m1 having value 1, m2

having value 2, etc. is Dirichlet with parameters α1 + m1, . . . , αK + mK .

The predictive distribution for item n + 1 is

P (Yn+1 = k |Y1 = y1, . . . , YK = yk) =
mk + αk

n + Σαk



Independent Observations from a Gaussian Distribution

We observe real variables Y1, Y2, . . . , Yn.

We model these as being independent, all from some Gaussian distribution with

unknown mean, µ, and known variance, σ2.

The conjugate prior for µ is Gaussian with some mean µ0 and variance σ2
0.

Rather than talk about the variance, it is more convenient to talk about the

precision, equal to the reciprocal of the variance. A data point has precision

τ = 1/σ2 and the prior has precision τ0 = 1/σ2
0.

The posterior distribution for µ is also Gaussian, with precision τn = τ0 + nτ ,

and with mean

µn =
τ0µ0 + nτy

τ0 + nτ

where y is the sample mean of the observatons y1, . . . , yn.

The predictive distribution for Yn+1 is Gaussian with mean µn and variance

(1/τn) + σ2.

If we let σ0 go to infinity — an example of an improper prior — the posterior

mean, µn, will equal the sample mean, y.



Gaussian with Unknown Variance

What if both the mean and the variance (precision) of the Gaussian distribution

for Y1, . . . , Yn are unknown?

There is still a conjugate prior, but in it, µ and τ are dependent:

τ ∼ Gamma(a, b)

µ | τ ∼ N(µ0, c/τ)

for some positive constants a, b, and c.

It’s hard to imagine circumstances where our prior information about µ and τ

would have a dependence of this sort. But unfortunately, people use this

conjugate prior anyway, because it’s convenient.



Bayesian Linear Basis Function Models



A Bayesian Linear Basis Function Model

Let’s set up a Bayesian linear basis function model by giving β a Gaussian prior:

yi |xi, β ∼ N(φ(xi)
T β, σ2)

β ∼ N(m0, S0)

This Gaussian prior will turn out to be conjugate.

For the moment, we regard σ2, m0, and S0 as known.

Often, we will let m0 = 0 and let S0 be diagonal, so that the βj are independent.

We might let β0 have a large variance, and all the other βj have the same variance.

The symbol y will sometime denote a single, generic response value, and other

times denote the vector [y1, . . . , yn]T of responses for training cases. We use Φ for

the matrix of basis function values for the n training cases.



Multivariate Gaussian Model with Multivariate Gaussian Prior

To warm up. . . Suppose we model an observed vector b as having a multivariate

Gaussian distribution with known covariance matrix B and unknown mean x. We

give x a multivariate Gaussian prior with known covariance matrix A and known

mean a.

The posterior distribution of x will be Gaussian, since the product of the prior

density and the likelihood is proportional to the exponential of a quadratic

function of x:

Prior × Likelihood ∝ exp(−(x − a)T A−1(x − a)/2) exp(−(b − x)T B−1(b − x)/2)

The log posterior density is this quadratic function (· · · is parts not involving x):

−1

2

[

(x − a)T A−1(x − a) + (b − x)T B−1(b − x)
]

+ · · ·

= −1

2

[

xT (A−1 + B−1)x − 2xT (A−1a + B−1b)
]

+ · · ·

= −1

2

[

(x − c)T (A−1 + B−1)(x − c)
]

+ · · ·

where c = (A−1 + B−1)−1 (A−1a + B−1b). This is the density for a Gaussian

distribution with mean c and variance (A−1 + B−1)−1.



Posterior for Linear Basis Function Model

Both the log prior and the log likelihood are quadratic functions of β. The log

likelihood for β is

−1

2

[

(y − Φβ)T (σ2I)−1(y − Φβ)
]

+ · · · = −1

2

1

σ2

[

βT ΦT Φβ − 2βT ΦT y
]

+ · · ·

which is the same quadratic function of β as for a Gaussian log density with

covariance σ2(ΦT Φ)−1 and mean (ΦT Φ)−1ΦT y.

This combines with the prior for β in the same way on the previous slide, with

the result that the posterior distribution for β is Gaussian with covariance

Sn =
[

S−1
0 + (σ2(ΦT Φ)−1)−1

]

−1

=
[

S−1
0 + (1/σ2)ΦT Φ

]

−1

and mean

mn = (S−1
n )−1

[

S−1
0 m0 + (1/σ2)ΦT Φ(ΦT Φ)−1ΦT y

]

= Sn

[

S−1
0 m0 + (1/σ2)ΦT y

]



Predictive Distribution for a Test Case

We can write the response, y, for some new case with inputs x as

y = φ(x)T β + e

where the “noise” e has the N(0, σ2) distribution, independently of β.

Since the posterior distribution for β is N(mn, Sn), the posterior distribution for

φ(x)T β will be N(φ(x)T mn, φ(x)T Snφ(x)).

Hence the predictive distribution for y will be N(φ(x)T mn, φ(x)T Snφ(x) + σ2).


