
STA 414/2104

Statistical Methods for Machine Learning and Data Mining

Radford M. Neal, University of Toronto, 2012

Week 7



Bayesian Neural Networks



A Prior Distribution for Network Weights

Recall the architecture of a multilayer perceptron network with one hidden layer:

w
(1)

w
(2)

φ

φ

φ

φ

3

1

4

2

1

3

x 

x 

x 

Output UnitHidden UnitsInput Units

2   (x)

   (x)

   (x)

    (x)

f(x,w)

f(x, w) = w
(2)
0 +

m
∑

j=1

w
(2)
j φj(x, w), φj(x, w) = h

(

w
(1)
0j +

p
∑

k=1

w
(1)
kj xk

)

Rather than find parameters w by maximization, we can use a Bayesian method,

in which we give a prior distribution to w. One possibility is independent normal

priors, as follows:

w
(1)
0j ∼ N(0, σ

(1)
0 ), w

(1)
kj ∼ N(0, σ(1)), w

(2)
0 ∼ N(0, σ

(2)
0 ), w

(2)
j ∼ N(0, σ(2))



Samples From Priors Over Functions Defined by This Prior

m = 1 m = 100

σ
(1)
0 = 3, σ(1) = 7, σ

(2)
0 = 1, σ(2) = 4 σ

(1)
0 = 3, σ(1) = 7, σ

(2)
0 = 1, σ(2) = 4/

√
m

−1.0 −0.5 0.0 0.5 1.0

−
10

−
5

0
5

10

x

f(
x)

−1.0 −0.5 0.0 0.5 1.0

−
10

−
5

0
5

10

x

f(
x)



More Samples From Priors Over Functions (m = 100)

σ
(1)
0 = 3 × 5, σ(1) = 7 × 5 σ

(1)
0 = 3/5, σ(1) = 7/5

σ
(2)
0 = 1, σ(2) = 4/

√
m σ

(2)
0 = 4, σ(2) = 4/

√
m

−1.0 −0.5 0.0 0.5 1.0

−
10

−
5

0
5

10

x

f(
x)

−1.0 −0.5 0.0 0.5 1.0

−
10

−
5

0
5

10

x

f(
x)



Properties of this Prior for a Multilayer Perceptron Network

• The standard deviation for w(1) determines how “wiggly” the function is,

when m is large.

• The standard deviation for w
(1)
0 determines the range over which such wiggles

occur.

• The standard deviation for w(2) determines the scale variation in the function.

• To keep this variation the same as we increase m, we need to decrease the

standard deviation for w(2) by the factor
√

m.

• The standard deviation for w
(2)
0 determines how large a vertical offset the

function might have.

• When m is large, the Central Limit Theorem tells us that the prior

distribution for f(x), with x some fixed input, approaches a Gaussian

distribution.

• In fact, the joint distribution for f(x1), f(x2), f(x3), etc. approaches a

multivariate Gaussian distribution, for any set of inputs x1, x2, x3, . . .



OK, Nice Prior, But What About the Posterior...?

To actually use a Bayesian neural network, we have to make predictions for test

cases based on the posterior distribution.

This requires sophisticated Markov chain Monte Carlo methods, which work quite

well, but are beyond the scope of this course.

But the way that the prior over values of the function approaches a multivariate

Gaussian as m → ∞ suggests an alternative approach, which we’ll look at next. . .



Gaussian Process Models



Bayesian Linear Basis Function Model

Recall the linear basis function model, which we can write as

y ∼ N(Φβ, σ2I)

where here,

– y is the vector of observed targets

– β is the vector of regression coefficients

– σ2 is the “noise” variance

– Φ is the matrix of basis function values in the training cases.

Suppose that our prior for β is N(0, S0). This is a conjugate prior, with the

posterior for β also being normal.

For the moment, we regard σ2 and S0 as known.



Prior Distribution of Responses for a Linear Basis Function

Model with Gaussian Noise and Gaussian Prior

When m, the number of basis functions, is greater than n, the number of

observations in our training set, it is computationally attractive to shift focus

from the parameters βj for j = 0, . . . , m−1 (collectively written β) to the

observed responses, yi for i = 1, . . . , n (collectively written y).

We need to find the prior distribution of y implied by the prior distribution of β.

If the prior distribution of β is Gaussian, the prior of y will also be Gaussian,

since y = Φβ + e is a linear function of jointly Gaussian variables.

If the prior for β has mean zero, so will the prior for y.

If the prior covariance of β is S0, the prior covariance of y will be σ2I + ΦS0Φ
T . If

the βj are independent in the prior, with the variance of βj being ω2
j , then

Cov(yi, yi′) = σ2δi,i′ +
m−1
∑

j=0

ω2
j φj(xi)φj(xi′)

where δi,i′ = 1 if i = i′ and zero otherwise.



Predicting Directly Using the Prior for Responses

In similar fashion, we can find the prior covariance between responses in any two

cases, whether they be training cases or future test cases.

Let C be the n × n covariance matrix of all the responses, y1, . . . , yn, in the

training set. For some test case with input x∗, let k be the vector of covariances

of the response for the test case, y∗, with the responses for training cases. Finally,

let v be the variance of the test response (covariance of y∗ with itself).

As before, we assume prior means of zero (from a prior mean of zero for β).

We can now make predictions directly, without further reference to the β

parameters, by finding the predictive density

P (y∗ | y1, . . . , yn)

Since conditional distributions from multivariate Gaussians are Gaussian, this

predictive distribution will be Gaussian, fully specified by mean and variance.

Applying the general formulas for Gaussian conditional distributions, we get

E(y∗ | y1, . . . , yn) = kT C−1y, Var(y∗ | y1, . . . , yn) = v − kT C−1k

This takes O(n3+n2m) time to compute, versus O(m3+nm2) for previous method.



Marginal Likelihood Directly from the Prior for the Responses

When σ, ω, and perhaps some parameters of the φ functions are not known, we

may wish to estimate or sample them based on the marginal likelihood given the

observed responses, y.

We saw how to do this before, working with the posterior distribution of β, in

O(m3+nm2) time.

Working directly with the covariances of the responses, the marginal likelihood is

just the Gaussian prior probability density for the responses. So the log marginal

likelihood is

−n

2
log(2π) − 1

2
log(|C|) − 1

2
yT C−1y

This takes O(n3+n2m) time to compute.

For both prediction and marginal likelihood, which method is faster depends on

the relative magnitudes of n and m. When m is sufficiently bigger than n, it’s

better to work directly with the responses, integrating away β.



Letting the Number of Basis Functions go to Infinity

When working directly with the responses, the basis functions and the prior for

the βj are used only to find the covariance between the responses in two cases,

which we can write as

Cov(yi, yi′) = σ2δi,i′ + K(xi, xi′)

where K is the noise-free covariance function:

K(x, x′) =
m−1
∑

j=0

ω2
j φj(x)φj(x

′)

If our choice of ωj and φj for j = 1, 2, 3, . . . is such that the sum above reaches a

finite limit as m → ∞, the model with infinite m makes sense.

If there’s a formula to compute this infinite sum, we can implement this model

with infinite m. If time to compute K(x, x′) is linear in the number of inputs, p,

computing the marginal likelihood or a prediction will take O(n3 + n2p) time.

[ When predicting for many test cases, each additional test case takes O(np) time

for just the predictive mean, and O(n2 + np) time if we also want the variance. ]



An Infinite Basis Function Model with Sines and Cosines

With one input, let’s use as basis functions φ0(x) = 1, and for h = 1, 2, 3, . . .

φ2h−1(x) = sin(fhx), φ2h(x) = cos(fhx)

where each fh is independently drawn from the N(0, ρ2) distribution.

For j = 1, . . . , m − 1, we’ll let

ω2
j =

η2

(m−1)/2

We now look at the limit as m → ∞ of

K(x, x′) = ω2
0 +

m−1
∑

j=1

ω2
j φj(x)φj(x

′)

= ω2
0 +

(m−1)/2
∑

h=1

η2

(m−1)/2

[

sin(fhx) sin(fhx′) + cos(fhx) cos(fhx′)
]

= ω2
0 + η2 1

(m−1)/2

(m−1)/2
∑

h=1

[

sin(fhx) sin(fhx′) + cos(fhx) cos(fhx′)
]

The average of (m−1)/2 terms above approaches an integral as m → ∞.



Covariance Function for the Model with Sines and Cosines

We can now find the covariance function as m → ∞:

K(x, x′) = ω2
0 + η2 1

(M−1)/2

(m−1)/2
∑

h=1

[

sin(fhx) sin(fhx′) + cos(fhx) cos(fhx′)
]

→ ω2
0 + η2

∫ +∞

−∞

1√
2πρ

exp
(

− f2

2ρ2

)[

sin(fx) sin(fx′) + cos(fx) cos(fx′)
]

df

= ω2
0 + η2 1√

2πρ

∫ +∞

−∞

exp
(

− f2

2ρ2

)

cos(f(x−x′)) df

= ω2
0 + η2 1√

2πρ

[√
2πρ exp(−ρ2(x − x′)2/2)

]

= ω2
0 + η2 exp(−ρ2(x − x′)2/2)

This is simple to compute, so it’s easy to use the model with infinite m.



From Linear Basis Function Models to Gaussian Processes

We see that a linear basis function model with a Gaussian prior for the

coefficients defines a Gaussian prior distribution for any set of observed or

unobserved responses.

If we fix all means to zero, this Gaussian prior distribution is determined by the

covariances between responses, which we saw could sometimes be computed even

when the number of basis functions is infinite.

But why bother?

We can just start with a function that defines the covariances between responses.

As long this function always produces positive-definite covariance matrices, we

can use it to infer unobserved responses from observed responses.

[ Actually, we might bother with the original basis functions approach if that was

the simplest way of expressing our prior beliefs, but often the covariances

themselves have more intuitive meaning. ]



Defining a Gaussian Process Model

We’ll model the response yi associated with covariate vector xi as being equal to

some function, f , of xi plus Gaussian noise: yi = f(xi) + ei, with ei ∼ N(0, σ2).

We can define the “noise-free” covariances in terms of a function K(x, x′), as:

Cov(f(xi), f(xi′)) = K(xi, xi′)

I’ll always assume that the prior means of all the yi are zero, so this is enough to

specify a multivariate Gaussian distribution for the value of the function at any

set of xi’s.

Since this gives us a prior for f(x) at an arbitrarily large set of x’s, it effectively

gives us a prior for the function f itself.

The covariances for actual (noisy) observations will be

Cov(yi, yi′) = σ2δi,i′ + K(xi, xi′)



The Covariance Function

We can choose the noise-free covariance function, K(x, x′), to be anything we

want, provided that it produces positive definite (or at least positive

semi-definite) covariance matrices for the yi’s with any allowed set of xi’s.

It’s not easy to determine whether some arbitrary K(x, x′) will produce positive

definite covariance matrices. But there are some well-known classes of valid

covariance functions.

Furthermore, the sum of two valid covariance functions, K1 and K2, is also a

valid covariance function. It can be seen as the covariance function for the sum of

two functions, one drawn from the Gaussian process with covariance K1 and the

other drawn independently from the Gaussian process with covariance K2.

The product of two covariance functions is also a valid covariance function

(though this isn’t so obvious).



Constant and Linear Covariance Functions

The constant covariance function:

K(x, x′) = σ2
0

can be derived from a model in which the function is an unknown constant:

f(x) = µ, with µ ∼ N(0, σ2
0).

The linear covariance function:

K(x, x′) = σ2
1 x x′

comes from a simple linear regression model, f(x) = βx with β ∼ N(0, σ2
1).

If we have two covariates, we can add linear covariances based on each, plus a

constant covariance, to get

K(x, x′) = σ2
0 + σ2

1 x1 x′

1 + σ2
2 x2 x′

2

(Note that subscripts on x here select covariates, not cases.)



Stationary Covariance Functions

A stationary covariance function can be written as K(x, x′) = K(x−x′). It is

translationally invariant, since only the difference x − x′ matters.

Typically, the covariance goes down with increasing distance of x and x′. One

class of valid covariance functions of this form is

K(x, x′) = γ2 exp(−ρ2||x − x′||r)

where ||x|| is the Euclidean norm. This is valid for any r ∈ (0, 2]. It’s clearly

rotationally symmetric.

One can compare the above to the following:

K(x, x′) = γ2 exp
(

− ρ2
p

∑

j=1

|xj − x′

j |r
)

They’re the same when p = 1 or r = 2, but they otherwise are different.

We can see that the second form is valid since it’s a product of covariance

functions of the first form.



Functions From Some Gaussian Process Priors

-2 -1 0 1 2

-2
-1

0
1

2

-2 -1 0 1 2

-2
-1

0
1

2

exp (−(x−x′)2) exp (−52(x−x′)2)

-2 -1 0 1 2

-2
-1

0
1

2

-2 -1 0 1 2

-2
-1

0
1

2

1 + xx′ exp (−(x−x′)2)

+ 0.12 exp (−32(x−x′)2) + 0.12 exp (−52(x−x′)2)



Predictions with Gaussian Process Models

If we know the covariance function, and the noise variance, predictions for test

cases with a Gaussian process model can be done with straightforward matrix

operations.

As we saw before, if y is the vector of responses in the n training cases, and y∗ is

the response for a test case, the conditional distribution of y∗ given y will be

Gaussian, with mean and variance given by

E(y∗ | y1, . . . , yn) = kT C−1y, Var(y∗ | y1, . . . , yn) = v − kT C−1k

Here C is the n × n covariance matrix of the responses, in the training set, k is

the vector of covariances of the response for the test case with the responses for

training cases, and v is the variance of the test response (covariance of y∗ with

itself).

If K(x, x′) takes O(p) time to compute, then C−1 will take O(pn2 + n3) time to

compute, after which a prediction for each test case takes O(np) time for just the

mean, plus O(n2) time if the variance is also required.



When the Covariance Function Isn’t Known

In practice, the covariance function usually has some unknown parameters

— such as the scale parameters γ and ρ in the exponential covariance function.

The noise variance is also typically not known.

The covariance matrix of responses, C, needed for prediction, will depend on

these unknown parameters.

One could find the maximum likelihood estimates for the unknown parameters,

and then use these single values for prediction.

The full Bayesian approach is to average predictions over the posterior

distribution for the unknown parameters, probably using Markov chain Monte

Carlo methods.


