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Introduction to Bayesian Methods



The Bayesian Approach to Machine Learning (Or Anything)

1) We formulate our knowledge about the situation probabilistically:

– We define a model that expresses qualitative aspects of our knowledge (eg,

forms of distributions, independence assumptions). The model will have

some unknown parameters.

– We specify a prior probability distribution for these unknown parameters

that expresses our beliefs about which values are more or less likely, before

seeing the data.

2) We gather data.

3) We compute the posterior probability distribution for the parameters, given

the observed data.

4) We use this posterior distribution to:

– Reach scientific conclusions, properly accounting for uncertainty.

– Make predictions by averaging over the posterior distribution.

– Make decisions so as to minimize posterior expected loss.



Finding the Posterior Distribution

The posterior distribution for the model parameters given the observed data is

found by combining the prior distribution with the likelihood for the parameters

given the data.

This is done using Bayes’ Rule:

P (parameters |data) =
P (parameters) P (data |parameters)

P (data)

The denominator is just the required normalizing constant, and can often be filled

in at the end, if necessary. So as a proportionality, we can write

P (parameters |data) ∝ P (parameters) P (data |parameters)

which can be written schematically as

Posterior ∝ Prior × Likelihood

We make predictions by integrating with respect to the posterior:

P (new data |data) =

∫

parameters

P (new data |parameters) P (parameters |data)



Representing the Prior and Posterior Distributions by Samples

The complex distributions we will often use as priors, or obtain as posteriors, may

not be easily represented or understood using formulas.

A very general technique is to represent a distribution by a sample of many values

drawn randomly from it. We can then:

– Visualize the distribution by viewing these sample values, or low-dimensional

projections of them.

– Make Monte Carlo estimates for probabilities or expectations with respect to

the distribution, by taking averages over these sample values.

Obtaining a sample from the prior is often easy. Obtaining a sample from the

posterior is usually more difficult — but this is nevertheless the dominant

approach to Bayesian computation.



Inference at a Higher Level: Comparing Models

So far, we’ve assumed we were able to start by making a definite choice of model.

What if we’re unsure which model is right?

We can compare models based on the marginal likelihood (aka, the evidence) for

each model, which is the probability the model assigns to the observed data. This

is the normalizing constant in Bayes’ Rule that we previously ignored:

P (data | M1) =

∫

parameters

P (data |parameters, M1) P (parameters |M1)

Here, M1 represents the condition that model M1 is the correct one (which

previously we silently assumed). Similarly, we can compute P (data | M2), for

some other model (which may have a different parameter space).

We might choose the model that gives higher probability to the data, or average

predictions from both models with weights based on their marginal likelihood,

multiplied by any prior preference we have for M1 versus M2.



A Simple Example — A Hard Linear Classifier

The problem:

We will be observing pairs (x(i), y(i)), for i = 1, . . . , n, where x = (x1, x2) is a 2D

“input” and y is a −1/ + 1 class indicator. We are interested in predicting y from

x. We are not interested in predicting x, and this may not even make sense (eg,

we may determine the x(i) ourselves).

Our informal beliefs:

We believe that there is a line somewhere in the input space that determines y

perfectly — with −1 on one side, +1 on the other.

We think that this line could equally well have any orientation, and that it could

equally well be positioned anywhere, as long as it is no more than a distance of

three from the origin at its closest point.

We need to translate these informal beliefs into a model and a prior.



Formalizing the Model

Our model can be formalized by saying that

P (y(i) = y |x(i), u, w) =







1 if y u (wT x(i) − 1) > 0

0 if y u (wT x(i) − 1) < 0

where u ∈ {−1,+1} and w = (w1, w2) are unknown parameters of the model. The

value of w determines a line separating the classes, and u says which class is on

which side. (Here, wT x is the scalar product of w and x.)

This model is rather dogmatic — eg, it says that y is certain to be +1 if

u = +1 and wT x is greater than 1. A more realistic model would replace the

probabilities of 0 and 1 above with ǫ and 1 − ǫ to account for possible unusual

items, or for misclassified items. ǫ might be another unknown parameter.



Formalizing the Prior

A line is completely determined by giving the point, c, on the line that is closest

to the origin.

To formalize our prior belief that the line separating classes could equally well be

anywhere, as long as it is no more than a distance of three from the origin, we

decide to use a uniform distribution for c over the circle with radius 3.

Given c, we can compute w = c/||c||2, which makes wT x = 1 for points on the

line. (Here, ||c||2 is the squared norm, c2
1 + c2

2.)

Here’s an example:
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We also say that u is equally likely to be +1 or −1, independently of w.



Looking at the Prior Distribution

We can check this prior distribution by looking at many lines sampled from it:
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Something’s wrong here. We meant for the lines to be uniformly distributed, but

we see a sparse region near the origin.



Why This Prior Distribution is Wrong

Our first attempt at formalizing our prior beliefs didn’t work. We can see why if

we think about it.

Imagine moving a line that’s within five

degrees of vertical from left to right:
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To stay within five degrees of vertical, the closest point to the origin has to be

within the wedge shown. This becomes less and less likely as the origin is

approached. We don’t get the same probability of a near-vertical line for all

horizontal positions.

Similarly, the probability of a near-horizontal line is less near the origin, and the

same for any other orientation of a line.



Fixing the Prior Distribution

We can fix the prior by letting the closest point on the line to the origin be

c = rv, with r uniformly distributed over (0, 3) and v uniformly distributed over

the unit circle (ie, at distance one from the origin).

Now a sample drawn from the prior looks the way we want it to:
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Some Data Points

Now that we have defined our model and prior, let’s get some data:
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The black points are in class +1, the white points in class −1.



Posterior Distribution for the Hard Linear Classifier

For the hard linear classifier, the likelihood is either 0 or 1:

P (y(1), . . . , y(n) |x(1), . . . , x(n), u, w) =
n

∏

i=1

P (y(i) |x(i), u, w)

=







1 if y(i) u (wT x(i) − 1) > 0, for i = 1, . . . , n

0 otherwise

The posterior distribution for u and w is therefore the same as their prior

distribution, except that parameter values incompatible with the data are

eliminated.

After renormalizing so that posterior probabilities integrate to one, the parameter

values compatible with the data will have higher probability than they did in the

prior.



Obtaining a Sample from the Posterior Distribution

To obtain a sample of values from the posterior, we can sample w values from the

prior, but retain only those that are compatible with the data (for some u).

Here’s what we get using a sample of size 200:
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The eight bold lines are a random sample from the posterior distribution.



Making a Prediction for a Test Case

The Bayesian predictive probability that in a test case with inputs x∗, the class,

y∗, will be +1 is found by integrating/summing over the parameters w and u:

P (y∗ = +1 |x∗, (x(1), y(1)), . . . , (x(n), y(n)))

=

∫

∑

u=±1

P (y∗ = +1 |x∗, u, w) P (u, w |x(1), y(1)), . . . , (x(n), y(n)) dw

Using a sample of K values from the posterior, (u(1), w(1)), . . . , (u(K), w(K)), we

can approximate this as follows:

P (y∗ = +1 |x∗, (x(1), y(1)), . . . , (x(n), y(n))) ≈
1

K

K
∑

j=1

P (y∗ = +1 |x∗, u(j), w(j))

For this model, P (y∗ = +1 |x∗, u(j), w(j)) is either 0 or 1, depending on the sign of

u(j) (w(j) T

x∗ − 1). The average above is just the fraction of lines drawn from the

posterior that would put the test point in class +1.



A Plot of the Predictive Probabilities

Here is a contour plot over the input space of the approximate predictive

probability of class +1, based on a sample of size 10000 from the prior, which

resulted in a sample of size 450 from the posterior:
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The contour lines go from 0 on the left to 1 on the right, in steps of 0.1.



The Marginal Likelihood

The sample of 10000 values from the prior also lets us estimate the marginal

likelihood for this model, given the seven observed data points.

We consider the x(i) to be fixed (not random), so the marginal likelihood is just

the probability of all the y(i) having their observed values. This probability is one

for a line that classifies all the points correctly, and zero for any other line.

We can therefore estimate the marginal likelihood by the fraction of lines drawn

from the prior that are compatible with the data: 450/10000 — except we have to

divide that by two, since the chance of picking u to have the +1’s on the right side

of the line is 1/2. So the marginal likelihood estimate for this data set is 0.0225.

We could use this to compare this model with some other, such as a model that

said the classes were separated by quadratic rather than linear curves.

However... the marginal likelihood is very sensitive to the prior used. If we

used a prior for the separating line that was uniform over a bigger region, say

allowing the closest point to the origin to be up to a distance of 10 away, the

marginal likelihood would be smaller (for this data set). Computing marginal

likelihoods makes sense only if you have given careful thought to the prior.



Final Thoughts on This Example

• We see that correctly translating informal knowledge into a prior distribution

isn’t always trivial.

• However, a prior can be tested, by checking how well it corresponds to our

prior beliefs. Prior distributions are not “arbitrary”.

• More elaborate priors might sometimes be appropriate. For example, we

might use a prior that favoured lines that are almost horizontal or almost

vertical, if we believe that probably one of the two inputs is mostly irrelevant.

• For a data set with seven points, only about 4.5% of the values for w drawn

from the prior made it into the posterior sample. This technique of sampling

parameters from their prior isn’t going to work for realistic problems. We

need better ways of sampling from the posterior distribution.


