
STA 414/2104, Spring 2014 — Assignment #3

Due at the start of class on April 3. Please hand it in on 8 1/2 by 11 inch paper, stapled in the
upper left, with no other packaging.

This assignment is to be done by each student individually. You may discuss it in general terms
with other students, but the work you hand in should be your own. In particular, you should not
leave any discussion with someone else with any written notes (either on paper or in electronic
form).

In this assignment, you will use a combination of Principal Components Analysis (PCA) and a
multilayer perceptron (MLP) neural network to classify whether images included in webpages
are advertisements or not.

The data is from a 1999 paper by Nicholas Kusmerick on “Learning to remove Internet
advertisements”, and is available from the UC Irving Machine Learning Repository, from the
URL archive.ics.uci.edu/ml/datasets/Internet+Advertisements. I have processed the
data to remove three covariates that are often missing, to remove a few cases in which another
covariate is missing, to remove a few covariates that are zero in all but nine or fewer cases, to
randomly reorder the cases, and to divide the cases into a training set of 1300 cases and a test
set of 1964 cases.

After this processing, there are 1521 covariates, all of which are binary (with values of 0
or 1). One of these covariates indicates whether the URL for the image is for the same server as
the main webpage. Others indicate whether or not certain words occur in text associated with
the image. Most of these covariates are 0 for most cases — in particular, 1281 of the covariates
have the value 1 in less than 1% of the training cases).

The data is available from the course web page in the following files:

a3trnx covariate values for the training cases
a3trny class labels for training cases
a3tstx covariate values for the test cases
a3tsty class labels for test cases

The class label is 1 if the image is an advertisement and 0 if the image is not an advertisement.
You should of course look at the labels for test cases only at the very end, to see how well you
did. You can read the covariate files with read.table, with the head=FALSE option, and then
convert the data to a matrix with as.matrix. You can read the labels with scan.

For both computational and statistical reasons, it may be desirable to reduce the dimen-
sionality of the covariates from 1521 to a much smaller number. You will do this using PCA,
keeping the first 10, 20, or 40 principal components. You will then see how well you can pre-
dict the class using only these 10, 20, or 40 principal components as covariates. You should
first try predicting the class using maximum likelihood logistic regression, and then try using a
multilayer perceptron network with 10 hidden units. You should try training the MLP network
by gradient descent on minus the log likelihood alone, and on minus the log likelihood plus a
quadratic penalty on the input-to-hidden weights (only).

1



To make predictions for the test cases, you will need to make choices of whether to use 10,
20, or 40 principal components, of what learning rate to use, of the number of gradient descent
iterations to do, and of whether or not to use a penalty and if so what its magnitude should
be. You should make these choices by splitting the 1300 training cases into an estimation set
(the first 1000 training cases) and a validation set (the last 300 training cases). You should
find principal component directions and fit logistic regression models using only the data in the
estimation set. When fitting the multilayer perceptron models, you should do gradient descent
using the gradient computed from only the cases in the estimation set. You should compute
the average log probability of the cases in the validation set according to the parameters found
for the logistic regression and MLP models in order to choose among them, and for the MLP
models, to choose how many iterations to train for, and what penalty magnitude to use. (You
could also choose the learning rate this way, but you may instead choose it so that minus the
log likelihood from the estimation set decreases steadily.)

You should find the principal component vectors using the pca.vectors function from the
PCA example (for week 10) on the course web page, which you can use without modification.
You should find these vectors using the estimation set of 1000 cases, not the full training set,
or the test set. Once you have found the principal component vectors, you can compute the
projections of the estimation, validation, and test cases on these vectors using the pca.proj

function. You will use these projections on the first 10, 20, or 40 principal component vectors
as covariates in your classification models.

You can fit logistic regression models by maximum likelihood using R’s glm function, with
the option family="binomial". For example, glm(y∼X,family="binomial") models the vec-
tor of binary responses y in terms of the matrix of covariates X.

You should fit multilayer perceptron models using a modified version of the example func-
tions provided on the course web page (for week 10). You will need to modify these functions
to model a binary response, replacing the squared error for a training case by minus the log
probability of the response. You will also need to modify the network training function so
that it can minimize the sum of minus the log likelihood over training cases plus a penalty
proportional to the sum of the squares of the weights on input to hidden connections, with the
penalty factor being an argument of the training function (set to zero for no penalty). In terms
of the week 10 lecture titled “Avoiding Overfitting Using a Penalty”, only the first penalty term
(sum of squares of w

(1)
kj multiplied by λ1) is used, with λ2 fixed at zero. Note that there is no

penalty on the “bias” parameters, w
(1)
0j .

You will need to write a function that computes the average log probability of the responses
for the 300 validation cases for all values of the parameters found in a network training run. You
can use this to select which set of parameters found during training seems best (which will not
necessarily be the parameters from the last iteration). You can also compare the best validation
performance for different training runs, that use different numbers of principal components, or
different penalty magnitudes. You will also need to compute the average log probability of
responses in the validation set using the logistic regression coefficients found using glm, using
different numbers of principal components. Using these figures on validation performance, you
can select which model (and set of model parameters) to use for making predictions for test
cases.

2



For the model and parameter set that you select, you should compute both the average log
probability of the responses for test cases, and the classification error rate, when classifying a
test case as being an advertisement (label 1) when the model says its probability of being an
advertisement is greater than 0.5. These figures indicate how well you would have done if this
were a real problem, in which you have to make predictions for test cases before knowing their
true values.

You should also find the average log probability of the response and the classification error
rate on test cases for all the other models and training runs that you did (using the best
parameter set from a run as chosen using the validation set). These performance figures are
of interest in seeing how reliable the performance on the validation set was as an indication of
performance on the test set.

You should hand in your modified MLP functions, the other functions you wrote, the R
script you used to read the data, fit models, and report the results, the output of this R script,
and a discussion of the results. In your discussion, you might comment on how easy or hard it
was to “tune” the network training (selecting a suitable learning rate, and a suitable number of
gradient descent iterations), how fast or slow the training was, whether training with a penalty
helped or not, how reliable performance on the validation set was as an indicator of which
model was best, and what the effect was of using more or fewer principal components.

3


