
STA 414/2104, Spring 2014, Answers to Practice Problem Set #1

Note: these problems are not for credit, and not to be handed in

Question 1: Consider a classification problem in which there are two real-valued inputs, x1 and
x2, and a binary (0/1) target (class) variable, y. There are 20 training cases, plotted below. Cases
where y = 1 are plotted as black dots, cases where y = 0 as white dots, with the location of the dot
giving the inputs, x1 and x2, for that training case.
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A) Estimate the error rate of the one-nearest-neighbor (1-NN) classifier for this problem using
leave-one-out cross validation. (That is, using S-fold cross validation with S equal to the
number of training cases, in which each training case is predicted using all the other training
cases.)

Three of the cases will be mis-classified based on the others, so the estimated error rate is 3/20.

B) Suppose we use the three-nearest-neightbor (3-NN) method to estimate the probability that
a test case is in class 1. For test cases with each of the following sets of input values, find the
estimated probability of class 1.

x1 = 1, x2 = 1

The answer is 2/3.

x1 = 2, x2 = 2

The answer is 1/3.

x1 = 3, x2 = 0

The answer is 1.
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Question 2: Here is a plot of 10 training cases for a binary classification problem with two input
variables, x1 and x2, with points in class 0 in white and points in class 1 in black:
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We wish to compare three variations on the K-nearest-neighbor method for this problem, using
10-fold cross validation (ie, we leave out each training case in turn and try to predict it from the
other nine). We use the fraction of cases that are misclassified as the error measure. We set K = 1
in all methods, so we just predict the class in a test case from the class of its nearest neighbor.

A) The first method looks only at x1, so the distance between cases with input vectors x and x′

is |x1 − x′1|. What is the cross-validation error for this method?

From left to right, the left out points are classified correctly (Y) or not (N) as follows:

Y Y N N Y Y Y Y N N

So the cross-validation assessment of the error rate is 4/10.

B) The second method looks only at x2, so the distance between cases with input vectors x and
x′ is |x2 − x′2|. What is the cross-validation error for this method?

From top to bottom, the left out points are classified correctly (Y) or not (N) as follows:

N N Y N N N N N N N

So the cross-validation assessment of the error rate is 9/10.

C) The third method looks at both inputs, and uses Euclidean distance, so the distance between

cases with input vectors x and x′ is
√
(x1 − x′

1
)2 + (x2 − x′

2
)2. What is the cross-validation

error for this method?

The cross-validation assessment of the error rate is 6/10.

D) If we use the method (from among these three) that is best according to 10-fold cross-
validation, what will be the predicted class for a test case with inputs x = (−0.25, 0.25)?

We classify the test point based only on x1, since that worked best in the cross-validation
assessment. This leads to the test point being classified as class 1 (black).
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Question 3: Consider a linear basis function regression model, with one input and the following
three basis functions:

φ0(x) = 1

φ1(x) = x

φ2(x) =

{
1− x2 if |x| < 1

0 if |x| ≥ 1

The model for the target variable, y, is that P (y |x, β) = N(y | f(x, β), 1), where

f(x, β) =
m−1∑

j=0

βjφj(x)

Suppose we have four data points, as plotted below:
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What is the maximum likelihood (least squares) estimate for the parameters β0, β1, and β2? Elab-
orate calculations should not be necessary.

Note that φ2(x) is zero for the data points where x = −1.5 and x = +1.5. So the value of β2 will
not affect the value of f(x,w) at these points. It can therefore be used to fit the two data points at
x = 0 (where φ(x) = 1) as well as possible, regardless of what β0 and β1 are. This in turn means
that we can use β0 and β1 to fit the two data points at x = −1.5 and x = +1.5. Looking at the line
joining these two points, we see that the intercept is −1/2 and the slope is −1/3. We will therefore
fit these points exactly if we use β0 = −1/2 and β1 = −1/3. Choosing β2 = 1.75 will then lead to
f(0, w) = 1.25, which is the best value we can have for fitting the two data points at x = 0.

3



Question 4: Below is a plot of a dataset of n = 3 observations of (xi, yi) pairs:
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In other words, the data points are (0, 1), (2, 3), (4, 2).

Suppose we model this data with a linear basis function model with m = 2 basis functions given by
φ0(x) = 1 and φ1(x) = x. We use a quadratic penalty of the form λβ2

1 , which penalizes only the
regression coefficient for φ1(x), not that for φ0(x).

Suppose we use squared error from three-fold cross-validation (ie, with each validation set having
only one case) to choose the value of λ. Suppose we consider only two values for λ — one very close
to zero, and one very large. For the data above, will we choose λ near zero, or λ that is very big?

With one point removed, the dataset will have only two points, so with λ close to zero, the regression
line will pass through these two points, whereas with λ very large, the regression line will be horizontal,
at the level equal to the mean of the two responses.

For λ close to zero, we see that leaving out points from left to right gives squared errors of 32, 1.52,
and 32, for a total of 20.25.

For λ very large, leaving out points from left to right gives squared errors of 1.52, 1.52, and 0, for a
total of 4.5.

So based on this cross-validation assessment, we would prefer the very large value of λ.
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Question 5: Consider a linear basis function model for a regression problem with response y and
a single scalar input, x, in which the basis functions are φ0(x) = 1, φ1(x) = x, and φ2(x) = |x|.
Below is a plot of four training cases to be fit with this model:
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A) Suppose we fit this linear basis function model by least squares. What will be the estimated
coefficients for the three basis functions, β̂0, β̂1, and β̂2?

The function fit will have the form β0 + β1x + β2|x|. This function is a straight line for
x < 0 and a straight line with possibly different slope for x > 0, with the lines joining at x = 0.
We can therefore choose β0, β1, and β2 to pass exactly through the points at x = −1 and
x = 0, and through the midpoint of the two points at x = +1, which is the best we can do to
minimize squared error.

This leads to β̂0 = 0.75, so that the point at x = 0 is fit exactly, to the constraint that
β̂1+ β̂2 = 1, so that the line for x > 0 has slope 1, and to the constraint that β̂1− β̂2 = −2,
so that the line for x < 0 has slope −2. Solving these equations, we get that β̂1 = −1/2 and
β̂2 = 3/2.

B) Suppose we fit this linear basis function model by penalized least squares, with a penalty of
λ|β1| (note that the penalty does not depend on β0 and β2). What will be the estimated
coefficients for the three basis functions, β̂0, β̂1, and β̂2 in the limit as λ goes to infinity?

An infinite penalty on β1 will force it to be zero, so the function will have the form β0 + β2|x|.

Fitting this to the given data is the same as fitting to the data with the point at x = −1 moved
to be at x = +1. There will then be three points at x = +1, with values 2.75, 2, and 1.5. The
mean of these points 6.25/3. The only other x point with data is x = 0, where y = 0.75. We
can choose β0 and β2 so that the line passes exactly through y = 0.75 at x = 0 and y = 6.25/3
at x = +1, which is the best we can do to minimize squared error. This is achieved when
β̂0 = 0.75 and β̂2 = 6.25/3− 0.75 = 4/3.
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C) Suppose we use the form of the penalty as in part (B), but with λ = 1. Will the penalized
least squares estimate for β1 be exactly zero? Show why or why not.

The estimate for β1 will not be exactly zero.

One way to see this is to compare the squared error plus penalty (with λ = 1) when β1 is forced
to zero and the squared error plus penalty (with λ = 1) when all coefficients are estimated
without a penalty. It turns out that the latter is smaller, so the penalized least squares estimate
with λ = 1 can’t have β̂1 = 0.

Here are the details of this calculation.

The best coefficients with β̂1 = 0 were found in part (B). With these coefficients, the squared
error is

02 + (2.75− 6.25/3)2 + (2− 6.25/3)2 + (1.5− 6.25/3)2

= (1/9) × ((8.25− 6.25)2 + (6− 6.25)2 + (4.5− 6.25)2)

= (1/9) × (4 + 1/16 + 49/16) = 114/144

Since β̂1 = 0, the penalty is zero.

The best coefficients with no penalty were found in part (A). With these coefficients, the squared
error is

02 + 02 + (1/4)2 + (1/4)2 = 1/8

The penalty is | − 1/2 | = 1/2. The squared error plus penalty is therefore 5/8, which is less
than 114/144.

Another way to answer this question is to compute the derivative with respect to β1 of the
squared error at the best estimates with β1 = 0 that were found in part (B), which isn’t too
hard. The estimate for β1 will be zero if this derivative is smaller in absolute value than λ,
but it’s not, when λ = 1.
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Question 6: Suppose that we observe a binary (0/1) variable, Y1. We do not know the probability,
θ, that Y1 will be 1, but we have a prior distribution for θ, that has the following density function
on the interval (0, 1):

P (θ) = 12
(
θ −

1

2

)2

A) Find as simple a formula as you can for the density function of the posterior distribution of θ
given that we observe Y1 = 1. Your formula should give the correcty normalized density.

P (θ |Y1 = 1) = θ · 12(θ − 1/2)2
/∫

1

0

θ · 12(θ − 1/2)2 dθ

= 24θ(θ − 1/2)2

B) Suppose that Y2 is a future observation, that is independent of Y1 given θ. Find the predictive
probability that Y2 = 1 given that Y1 = 1 — ie, find P (Y2 = 1 |Y1 = 1).

P (Y2 = 1 |Y1 = 1) =

∫
1

0

θ · 24θ(θ − 1/2)2 dθ = 4/5
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Question 7: Let X1, X2, X3, . . . for a sequence of binary (0/1) random variables. Given a value
for θ, these random variables are independent, and P (Xi = 1) = θ for all i. Suppose that we are
sure that θ is at least 1/2, and that our prior distribution for θ for values 1/2 and above is uniform
on the interval [1/2, 1]. We have observed that X1 = 0, but don’t know the values of any other Xi.

A) Write down the likelihood function for θ, based on the observation X1 = 0.

L(θ) = P (X1 = 0 | θ) = 1− θ

B) Find an expression for the posterior probability density function of θ given X1 = 0, simplified
as much as possible, with the correct normalizing constant included.

The prior density is P (θ) = 2 for θ ∈ [1/2, 1], 0 otherwise.

The posterior density is P (θ |X1 = 0) = 0 for θ /∈ [1/2, 1], and otherwise P (θ |X1 = 0) ∝
P (θ)L(θ) ∝ 2 (1−θ). The normalizing constant can be found by evaluating

∫
1

1/2 2 (1−θ) dθ =
1/4, from which we find that P (θ |X1 = 0) = 8 (1− θ) for θ ∈ [1/2, 1].

C) Find the predictive probability that X2 = 1 given that X1 = 0.

P (X2 = 1 |X1 = 0) =
∫
P (X2 = 1 | θ)P (θ |X1 = 0) dθ = =

∫
1

1/2 θ 8 (1− θ) dθ = 2/3

D) Find the probability that X2 = X3 given that X1 = 0.

P (X2 = X3 |X1 = 0) =

∫
P (X2 = X3 | θ)P (θ |X1 = 0) dθ

=

∫
[P (X2 = 0, X3 = 0 | θ) + P (X2 = 1, X3 = 1 | θ) ]P (θ |X1 = 0) dθ

=

∫
[P (X2 = 0 | θ)P (X3 = 0 | θ) + P (X2 = 1 | θ)P (X3 = 1 | θ) ]P (θ |X1 = 0) dθ

=

∫
1

1/2
((1− θ)2 + θ2) 8 (1− θ) dθ

= 7/12

Note that X2 and X3 are independent given θ, but they are not independent given just X1.
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Question 8: Consider a binary classification problem in which the probability that the class, y,
of an item is 1 depends on a single real-valued input, x, with the classes for different cases being
independent, given a parameter φ and x. We use the following model for this class probability in
terms of the unknown parameter φ:

P (y = 1 |x, φ) =

{
1/2 if x ≤ φ
1 if x > φ

We have a training set consisting of the following six (x, y) pairs:

(0.1, 0), (0.3, 1), (0.4, 0), (0.6, 1), (0.7, 1), (0.8, 1)

A) Draw a graph of the likelihood function for φ based on the six training cases above.

The likelihood is the probability of the observed classes as a function of φ, with the x values
taken as given. Due to independence, the probability of the data is just the product of the
probabilities for the six observed classes, which are either 0, 1, or 1/2, depending for each case
on y and whether or not x is greater than φ.

This gives the following plot of the likelihood function:

0 0.1 10.90.80.70.50.40.30.2
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B) Compute the marginal likelihood for this model with this data (ie, the prior probability of
the observed training data with this model and prior distribution), assuming that the prior
distribution of φ is uniform on the interval [0.5, 1]

Since the prior density is zero outside the interval [0.5, 1], and the prior density is 2 within this
interval, the marginal likelihood is the integral over the interval [0.5, 1] of 2 times the likelihood
function above. This is equal to

2 × (0.1/8 + 0.1/16 + 0.1/32 + 0.2/64) = 2 × 0.8 / 32 = 1/20
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C) Find the posterior distribution of φ given the six training cases above, and the prior from part
(B) Display this posterior distribution by drawing a graph of its probability density function.

The posterior density is zero where the prior is zero, outside the interval [0.5, 1]. Within this
interval, the posterior density is equal to the likelihood, times the prior density of 2, divided
by the marginal likelihood of 1/20.

This gives the following plot of the posterior density:
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D) Find the predictive probability that y = 1 for each of three test cases in which x has the values
0.2, 0.6, and 0.7, based on the posterior distribution you found in part (C).

All values of φ with non-zero posterior density predict that a case with x = 0.2 will have y = 1
with probability 1/2. So the predictive probability that y = 1 at that x is 1/2.

The posterior probability that φ is less than 0.6 is 5× 0.1 = 0.5, so the predictive probability
of y = 1 when x = 0.6 is 0.5× 1 + (1−0.5)× (1/2) = 0.75.

The posterior probability that φ is less than 0.7 is 5 × 0.1 + (5/2) × 0.1 = 0.75, so the
predictive probability of y = 1 when x = 0.7 is 0.75× 1 + (1−0.75)× (1/2) = 0.875.
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Question 9: Below is a plot of six training cases for a regression problem with two inputs. The
location of the circle for a training case gives the values of the two inputs, x1 and x2, for that case,
and the number in the circle is the value of the response, y, for that case.
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Suppose we use a linear basis function model for this data, with the following basis functions:

φ0(x) = 1

φ1(x) =

{
1 if x1 > 0

0 if x1 ≤ 0

φ2(x) =

{
1 if x1 + x2 > 0

0 if x1 + x2 ≤ 0

A) What will be the least squares estimates of the regression coefficients, β0, β1, and β2, based on
these six training cases (ignore the question mark in the lower right for now)? No elaborate
matrix computations should be needed to answer this.

For the two points in the lower-left quadrant, both φ1 and φ2 will be zero, so for these points,
y will be modeled as β0 plus noise. The best fit possible for these points is when β0 is their
average, 2.0.

For the two points in the upper-left quadrant (both above the diagonal line), φ1 will be zero
and φ2 will be one, so for these points, y will be modeled as β0 + β2 plus noise. The best fit
possible for these points is when β0 + β2 is their average, 2.1. If we set β0 to 2.0 in order to
model the points in the lower left, we can achieve this by setting β2 to 0.1.

For the two points in the uppper-right quadrant, both φ1 and φ2 will be one, so for these points,
y will be modeled as β0 + β1 + β2 plus noise. The best fit possible for these points is when
β0+β1+β2 is their average, 2.5. If we set β0 to 2.0 and β2 to 0.1 in order to model the other
points, we can achieve this by setting β1 to 0.4.

So the answer is β̂0 = 2.0, β̂1 = 0.4, β̂2 = 0.1.

B) Based on the least squares estimates for part (A), what will be the prediction for the value of
the response in a test case whose x1 and x2 values are given by the location of the question
mark in the plot above?

At this point, φ1 is one and φ2 is zero, so the prediction is β̂0 + β̂1 = 2.4.
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C) For this training set, find and estimate of the average squared error of prediction using least
squares estimates, by applying leave-one-out cross-validation (which is the same as six-fold
cross validation here, since there are six training cases).

Reviewing the answer to (A), we see that if we leave out one point of the pair in any of the
quadrants, we could fit the other point of that pair exactly, while still fitting the remaining
points as well as possible. So the error in predicting each left-out point will be its difference
from the other point in its pair. The answer is therefore

(12 + 12 + 0.22 + 0.22 + 0.42 + 0.42) / 6 = 0.4

D) What will be the prediction for the test case at the question mark based on penalized least
squares estimates, if the penalty has the form λ(β2

1 + β2
2), and λ is very large?

A very large penalty for β2
1 + β2

2 will force them both to be close to zero, at which point β0 will
be set to the overall mean of the y values, which is 2.2. This will then be the prediction for
the test case.

12



Question 10: Let Y1, Y2, Y3, . . . be random quantities that are independent given a parameter θ,
with each Yt having the value 1, 2, or 3, with probabilities

P (Yt = y | θ) =





θ if y = 1
2θ if y = 2
1−3θ if y = 3

The prior distribution for the model parameter θ is uniform on the interval [0, 1/3].

For the questions below, suppose we observe that Y1 = 1 and Y2 = 3, but do not observe Y3, Y4 . . ..

A) Find the marginal likelihood for this data (that is, the probability that Y1 = 1 and Y2 = 3,
integrating over the prior distribution of θ).

P (Y1 = 1, Y2 = 3) =

∫
P (Y1 = 1, Y2 = 3 | θ)P (θ) dθ =

∫
1/3

0

θ (1− 3θ) 3 dθ = 1/18

B) Find the posterior probability density function for θ (that is, the density for θ given Y1 = 1
and Y2 = 3), with the correct normalizing constant.

P (θ |Y1 = 1, Y2 = 3) =
P (Y1 = 1, Y2 = 3 | θ)P (θ)

P (Y1 = 1, Y2 = 3)

=
θ (1− 3θ) 3

1/18
= 54 θ (1− 3θ), for θ ∈ (0, 1/3)

C) Find the predictive distribution for Y3 given the observed data (that is, give a table of P (Y3 =
y |Y1 = 1, Y2 = 3) for y = 1, 2, 3).

P (Y3 = 1 |Y1 = 1, Y2 = 3) =

∫
1/3

0

θ 54 θ (1− 3θ) dθ = 1/6

P (Y3 = 2 |Y1 = 1, Y2 = 3) =

∫
1/3

0

2θ 54 θ (1− 3θ) dθ = 1/3

P (Y3 = 1 |Y1 = 1, Y2 = 3) =

∫
1/3

0

(1− 3θ) 54 θ (1− 3θ) dθ = 1/2
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Question 11: Answer the following questions about Bayesian inference for linear basis function
models. Recall that if the noise variance is σ2, and the prior distribution for β is Gaussian with
mean zero and covariance matrix S0, the posterior distribution for β is Gaussian with mean mn and
covariance matrix Sn that can be written as follows:

Sn =
[
S−1

0
+ (1/σ2)ΦTΦ

]
−1

, mn = SnΦ
Ty/σ2

and the log of the marginal likelihood for the model is

−
n

2
log(2π) −

n

2
log(σ2) −

1

2
log

( |S0|

|Sn|

)
−

1

2
||y − Φmn)||

2/σ2 −
1

2
mT

nS
−1

0
mn

For the questions below, assume that S0 = ω2I, for some positive ω.

A) Suppose we set the noise variance, σ2, to be bigger and bigger, while fixing other aspects of
the model. What will be the limiting values of the the posterior mean and covariance matrix?

In this limit, mn will go to zero, and Sn will go to S0. That is, the posterior distribution will
be the same as the prior distribution.

B) Suppose we set ω2, the prior variance of the βj , to be bigger and bigger, while fixing other
aspects of the model. What will be the limiting values of the the posterior mean, mn, and
covariance matrix, Sn?

In this limit, Sn will go to σ2(ΦTΦ)−1 and mn will go to (ΦTΦ)−1ΦTy, which is the same as
the least squares (maximum likelihood) estimate.

C) Suppose we set ω2 to be bigger and bigger while fixing other aspects of the model. What will
be the limiting value of the marginal likelihood?

The first and second terms in the expression above for the log marginal likelihood do not depend
on ω. The last term will go to zero as ω goes to infinity, since S−1

0
will go to zero, while (as we

saw in part (B)), mn goes to some finite limit, given by the maximum likelihood estimate. For
the same reason, as ω goes to infinity, the fourth term will go to some finite limit. However, the
third term, − log(|S0|/|Sn|), will go to minus infinity as ω goes to infinity, singce − log(|S0|)
will go to minus infinity and |Sn| will go to a finite limit.

The marginal likelihood will therefore go to zero as ω goes to infinity.

D) Suppose there is only one input (so x is a scalar), and the basis functions are φj(x) = xj , for
j = 0, . . . ,m− 1. The Bayesian mean prediction for the value of y in a test case with input x
is found by integrating the prediction based on β (ie, the expected value of y given x and β)
with respect to the posterior distribution of β. Will this final mean prediction be a polynomial
function of x?

Yes. The prediction for any fixed value of β will be a polynomial in x, so the expectation of
this prediction with respect to the posterior distribution of β will also be a polynomial in x,
since averaging any number of polynomials of some order gives another polynomial of the same
order.
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