
STA 414/2104, Spring 2014, Practice Problem Set #2, Answers

Question 1: Suppose we model the relationship of a real-valued response variable, y, to a single
real input, x, using a Gaussian process model in which the mean is zero and the covariances of
the observed responses are given by

Cov(yi, yi′) = 0.52δi,i′ + K(xi, xi′)

with the noise-free covariance function, K, defined by

K(x, x′) =

{

1− |x− x′| if |x− x′| < 1

0 otherwise

Suppose we have four training cases, as follows:

x y

0.5 2.0
2.8 3.3
1.6 3.0
3.9 2.7

Recall that the conditional mean of the response in a test case with input x∗, given the responses
in the training cases, is kTC−1y, where y is the vector of training responses, C is the covariance
matrix of training responses, and k is the vector of convariances of training responses with the
response in the test case.

Find the predictive mean for the response in a test case in which the input is x∗ = 1.2.

The covariance matrix of the training responses is

C =











1 + 0.52 0 0 0
0 1 + 0.52 0 0
0 0 1 + 0.52 0
0 0 0 1 + 0.52











The inverse of this is

C−1 =











0.8 0 0 0
0 0.8 0 0
0 0 0.8 0
0 0 0 0.8











The vector of covariances of the test response with the training responses is

k =











1− 0.7
0

1− 0.4
0











=











0.3
0
0.6
0











So kTC−1 = [0.24 0 0.48 0], and the predictive mean for the test response is

kTC−1y = 0.24× 2.0 + 0.48× 3.0 = 1.92

1



Question 2: Recall that for a Gaussian process model the predictive distribution for the response
y∗ in a test case with inputs x∗ has mean and variance given by

E[y∗ |x∗, training data] = kTC−1y

Var[y∗ |x∗, training data] = v − kTC−1k

where y is the vector of observed responses in training cases, C is the matrix of covariances for
the responses in training cases, k is the vector of covariances of the response in the test case with
the responses in training cases, and v is the prior variance of the response in the test case.

a) Suppose we have just one training case, with x1 = 3 and y1 = 4. Suppose also that the
noise-free covariance function is K(x, x′) = 2−|x−x′|, and the variance of the noise is 1/2.
Find the mean and variance of the predictive distribution for the response in a test case
for which the value of the input is 5.

The mean of the preditive distribution is

K(3, 5)[K(3, 3) + 1/2]−1(4) = (1/4)[1 + 1/2]−1(4) = 4/6

The variance of the predictive distribution is

[K(5, 5)+1/2]−K(3, 5)[K(3, 3)+1/2]−1K(3, 5) = [1+1/2]−(1/4)[1+1/2]−1(1/4) = 35/24

b) Repeat the calculations for (a), but using K(x, x′) = 2+|x−x′|. What can you conclude from
the result of this calculation?

The mean of the preditive distribution is

K(3, 5)[K(3, 3) + 1/2]−1(4) = (4)[1 + 1/2]−1(4) = 32/3

The variance of the predictive distribution is

[K(5, 5)+1/2]−K(3, 5)[K(3, 3)+1/2]−1K(3, 5) = [1+1/2]− (4)[1+1/2]−1(4) = −55/6

But variances cannot be negative! We can conclude that K(x, x′) = 2+|x−x′| is not a valid

covariance function — it is not positive semi-definite.

Question 3: Suppose that we are fitting a Gaussian mixture model for data items consisting
of a single real value, x, using K = 2 components. We have N = 5 training cases, in which the
values of x are as follows:

5, 15, 25, 30, 40

We use the EM algorithm to find the maximum likeihood estimates for the model parameters,
which are the mixing proportions for the two components, π1 and π2, and the means for the two
components, µ1 and µ2. The standard deviations for the two components are fixed at 10.

Suppose that at some point in the EM algorithm, the E step found that the responsibilities of
the two components for the five data items were as follows:

ri1 ri2

0.2 0.8
0.2 0.8
0.8 0.2
0.9 0.1
0.9 0.1
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What values for the parameters π1, π2, µ1, and µ2 will be found in the next M step of the
algorithm?

The new estimates will be

π1 = (0.2 + 0.2 + 0.8 + 0.9 + 0.9)/5 = 0.6

π2 = (0.8 + 0.8 + 0.2 + 0.1 + 0.1)/5 = 0.4

µ1 = (0.2× 5 + 0.2× 15 + 0.8× 25 + 0.9× 30 + 0.9× 40) / (0.2 + 0.2 + 0.8 + 0.9 + 0.9) = 29

µ2 = (0.8× 5 + 0.8× 15 + 0.2× 25 + 0.1× 30 + 0.1× 40) / (0.8 + 0.8 + 0.2 + 0.1 + 0.1) = 14

Question 4: Consider a two-component Gaussian mixture model for univariate data, in which
the probability density for an observation, x, is

(1/2)N(x|µ, 1) + (1/2)N(x|µ, 22)

Here, N(x|µ, σ2) denotes the density for x under a univariate normal distribution with mean µ
and variance σ2. Notice that mixing proportions are equal for this mixture model, that the two
components have the same mean, and that the standard deviations of the two components are
fixed at 1 and 2. There is only one model parameter, µ.

Suppose we wish to estimate the µ parameter by maximum likelihood using the EM algorithm.
Answer the following questions regarding how the E step and M step of this algorithm operate,
if we have the three data points below:

4.0, 4.6, 2.0

Here is a table of standard normal probability densities that you may find useful:

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

N(x|0, 1) .40 .40 .39 .38 .37 .35 .33 .31 .29 .27 .24 .22 .19 .17 .15 .13 .11 .09 .08 .07 .05

a) Find the responsibilities that will be computed in the E step if the model parameter esti-
mates from the previous M step are µ = 4, σ1 = 1, and σ2 = 2. Since the responsibilities
for the two components must add to one, it is enough to give ri1 = P (component 1 |xi) for
i = 1, 2, 3.

First, note that the normal density function with mean µ and variance σ2 is N(x|µ, σ2) =
(1/σ)N((x− µ)/σ|0, 1). Also N(−x|0, 1) = N(x|0, 1).

Using Bayes’ Rule, we get that

P (component 1|x) =
(1/2)N(x|µ, 1)

(1/2)N(x|µ, 1) + (1/2)N(x|µ, 22)

Applying this the three observations, we get

r11 =
(1/2)0.40

(1/2)0.40 + (1/2)(1/2)0.40
= 2/3

r21 =
(1/2)0.33

(1/2)0.33 + (1/2)(1/2)0.38
= 33/52

r31 =
(1/2)0.05

(1/2)0.05 + (1/2)(1/2)0.24
= 5/17
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b) Using the responsibilities that you computed in part (a), find the estimate for µ that will
be found in the next M step. Recall that the M step maximizes the expected value of the
log of the probability density for x1, x2, x3 and the unknown component indicators, with
the expectation taken with respect to the distribution for the component indicators found
in the previous E step.

The expected log likelihood is

3
∑

i=1

[

ri1(−(1/2)(xi − µ)2) + (1− ri1)(−(1/2)(xi − µ)/22)
]

To find the maximum of this with respect to µ, we take the derivative with respect to µ,
which is

3
∑

i=1

[ri1(xi − µ) + (1− ri1)(xi − µ)/4]

Setting this to zero and solving for µ gives

µ̂ =

∑

3
i=1(ri1 + (1− ri1)/4)xi
∑

3
i=1(ri1 + (1− ri1)/4)

=
(3/4)4.0 + (151/208)4.6 + (25/68)2.0

(3/4) + (151/208) + (25/68)

Question 5: Consider a binary classification task in which a 0/1 response, y, is to be predicted
from three binary covariates, x1, x2, x3. We have six training cases, as follows:

y x1 x2 x3

0 1 0 1
0 0 1 0
1 1 0 1
1 1 1 0
1 0 0 1
1 1 0 0

We decide to use a naive Bayes model for this task, in which the three covariates are modeled as
being independent within each class. The distribution for covariate j within class k is modeled
as Bernoulli(θkj). We estimate the probabilities of the classes and θkj for k = 0, 1 and j = 1, 2, 3
from the training data, by maximum likelihood.

a) Based on the training data above, what will be the estimates for the class probabilities and
for the θkj parameters?

The class probabilities will be estimated from the frequencies in the training data as P (y =
0) = 2/6 = 1/3 and P (y = 1) = 4/6 = 2/3.

The probabilities for the xi given y = 0 will be estimated from the two training cases with

y = 0 as θ01 = θ02 = θ03 = 1/2.

The probabilities for the xi given y = 1 will be estimated from the four training cases with

y = 0 as θ11 = 3/4, θ12 = 1/4, and θ13 = 2/4 = 1/2.
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b) According to this naive Bayes model, using the training data above, what is that probability
that y = 1 for each of the test cases below?

• x1 = 1, x2 = 1, x3 = 0

Answer:

P (y = 1 |x1 = 1, x2 = 1, x3 = 0)

=
P (y = 1)P (x1 = 1, x2 = 1, x3 = 0|y = 1)

P (y = 0)P (x1 = 1, x2 = 1, x3 = 0|y = 0) + P (y = 1)P (x1 = 1, x2 = 1, x3 = 0|y = 1)

=
(2/3) (3/4) (1/4) (1/2)

(1/3) (1/2) (1/2) (1/2) + (2/3) (3/4) (1/4) (1/2)

= 3/5

• x1 = 1, x2 = 0, x3 = 1

Answer:

P (y = 1 |x1 = 0, x2 = 0, x3 = 1)

=
P (y = 1)P (x1 = 1, x2 = 0, x3 = 1|y = 1)

P (y = 0)P (x1 = 1, x2 = 0, x3 = 1|y = 0) + P (y = 1)P (x1 = 1, x2 = 0, x3 = 1|y = 1)

=
(2/3) (3/4) (3/4) (1/2)

(1/3) (1/2) (1/2) (1/2) + (2/3) (3/4) (3/4) (1/2)

= 9/11

c) Suppose that the loss from classifying an item as being in class 1 when it is really in class
0 is twice as large as the loss from classifying an item as being in class 0 when it is really
in class 1. How should you classify each of the following test cases?

• x1 = 1, x2 = 1, x3 = 0

Let the loss classifying as class 1 when really class 0 be 2, and the loss classifying as

class 0 when really class 1 be 1.

Expected loss if you classify as class 0 is 1× P (y = 1|x1 = 1, x2 = 1, x3 = 0) = 3/5.

Expected loss if you classify as class 1 is 2× P (y = 0|x1 = 1, x2 = 1, x3 = 0) = 4/5.

So you should classify as class 0.

• x1 = 1, x2 = 0, x3 = 1

Expected loss if you classify as class 0 is 1×P (y = 1|x1 = 1, x2 = 0, x3 = 1) = 9/11.

Expected loss if you classify as class 1 is 2×P (y = 0|x1 = 1, x2 = 0, x3 = 1) = 4/11.

So you should classify as class 1.
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