
STA 414/2104

Statistical Methods for Machine Learning and Data Mining

Radford M. Neal, University of Toronto, 2014

Week 10

Neural Networks

“Curse of Dimensionality” for Linear Basis Function Models

Modeling a general non-linear relationship of y to x with a linear basis function

model seems attractive when x is of low dimension, but when there are many

inputs, we would seem to need a huge number of local basis functions to “cover”

the high dimensional input space.

This is at least a computational problem — part of the “curse of dimensionality”.

We saw, though, that it’s actually possible to use an infinite number of basis

functions — in the Gaussian process framework.

Another possibility is to use a relatively small number of basis functions, that

cover only the actual area where x values are found, which may be the vicinity of

a manifold of much lower dimension. We might either:

– pick a subset of data points as centres for basis functions, or

– make the basis functions depend on parameters that adapt to the data.

We’ll look now at one class of models of the second type.

“Neural Networks” with One “Hidden Layer”

The term “neural network” can refer to many models that were originally inspired

by thoughts on how the brain might work. We’ll look here at the most common

one — a “multilayer perceptron” network (MLP) with one “hidden layer”.

This can be seen as a linear basis function model extended to make the basis

functions depend on some additional parameters. (So the model is no longer

linear with respect to these additional parameters.)

As before, we model the response y for a case with inputs x as

y = f(x,w) + noise

but now the parameters w — called “weights” — come in two groups:

– A matrix w(1) defines the basis functions.

– A vector w(2) defines a linear combination of these basis functions.

The Architecture of a Multilayer Perceptron Network

A multilayer perceptron with one layer of four “hidden” units looks like this:

w
(1)

w
(2)

φ

φ

φ

φ

3

1

4

2

1

3

x

x

x

Output UnitHidden UnitsInput Units

2 (x)

 (x)

 (x)

 (x)

f(x,w)

Each element of w(1) and w(2) is associated with one of the arrows (connections)

above. Each hidden unit computes a value that is a function of a linear

combination of the values of units that point into it, with weights given by w(1).

More layers of hidden units can be added — the hidden unit values in one layer

are computed from linear combinations of hidden unit values in the previous

layer. There could be more than one response variable, in which case w(2) will be

a matrix.

The Function Computed by the Network

The function, f(x,w), computed by a multilayer perceptron network with one

hidden layer of m units and one output unit can be written as follows:

f(x,w) = w
(2)
0 +

m
∑

j=1

w
(2)
j φj(x,w), φj(x,w) = h

(

w
(1)
0j +

p
∑

k=1

w
(1)
kj xk

)

The network can approximate any function (better as m increases) if the

activation function, h(a), is any non-polynomial function.

A traditional choice of activation function (which I’ll assume in later slides) is

tanh(a) = (ea − e−a) / (ea + e−a). It looks like this:

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

z

ta
nh

(z
)

Training the Network by Maximum Likelihood

The simplest training procedure for an MLP network is to simply adjust the

parameters (w) to maximize some measure of fit to the training data. The most

obvious measure of fit is likelihood.

For a regresson problem, we may model the target values in training cases,

y1, . . . , yn, as being independent (given x1, . . . , xn and w), with responses

distributed as yi ∼ N(f(xi, w), σ
2), for some noise variance σ2.

The log of the likelihood (ignoring terms not involving w) is then

−
1

2σ2

n
∑

i=1

(yi − f(xi, w))
2

So maximum likelihood estimation for w just minimizes total squared error. But

this is a complicated function of w, with no analytical way to find the maximum.

In real problems, the dimension of w, which is m(p+2) + 1, may be in the

hundreds, thousands, tens of thousands, . . .

There usually are many local maxima, and finding a global maximum is hopeless.

Fortunately, good results are often obtained from fairly good local maxima.

Multiple Ways of Fitting the Data with an MLP

We may not need to find the global maximum of the likelihood because an MLP

can fit the data in multiple ways — some producing identical results, others

producing nearly identical results.

First, there are exact symmetries:

• Permuting the order of hidden units.

• For any hidden unit, j, negating w
(2)
j and w

(1)
kj for all k (including 0).

There are also similar, but different, ways to fit the data.

Suppose we have 10 hidden units, but 3 hidden units are enough to roughly fit

the data. The other 7 hidden units could fit various different slight wiggles, with

any of these overall fits being fairly good.

Example of Fitting a Network

Here are 100 training points (circles) that I

artificially generated as y = sin(4x) + noise,

and the functions computed by three MLP

networks with three hidden units found

by fitting this data, with different starting

points of the optimization procedure. The

three fits are indistinguishable. The biggest

difference in predicted value over the range

(0, 1) is about 0.003.
0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

x

y

Here are the parameter values for the three fits:

w
(1)
11 w

(1)
12 w

(1)
13 w

(1)
01 w

(1)
02 w

(1)
03 w

(2)
1 w

(2)
2 w

(2)
3 w

(2)
0

-1.807 1.422 -2.923 -0.159 -0.224 2.052 -1.565 1.162 1.894 -1.829

-1.906 3.018 -0.218 0.005 -2.132 0.436 -2.140 -1.690 -0.530 -1.418

2.924 0.621 1.906 -2.078 -0.435 0.004 -1.867 0.885 1.987 -1.459

Iteratively Finding the MLP Parameters that

Maximize the Likelihood

There is no analytical way of finding the parameters, w, of a multilayer

perceptron network that maximize the likelihood, so iterative methods are used.

To start, we set all the network parameters to small random values — eg, values

drawn uniformly from [−0.1,+0.1]. (Except we might set w
(2)
0 to the mean of y in

the training cases, so it won’t be far off if this mean is large.)

Setting all the w
(2)
j and w

(1)
kj to zero would not work, since the hidden units are

then all identical, and an iterative method that treats them symmetrically could

never make them non-identical.

We stop trying to increase the likelihood when either (a) the likelihood seems to

be at a local maximum, or (b) it seems that trying to increase the likelihood

further would actually make performance on test cases worse, or (c) our patience

runs out. For (b), we need to use a held-out set of “validation” cases.

Optimizing neural network parameters may be quick for simple problems, but for

the most difficult problems, network training can take days (or even weeks).

Three Approaches to Optimization

We’ll see that it’s easy to compute the partial derivatives of the log likelihood.

Second derivatives can also be computed.

Using these derivatives, several iterative approaches to maximizing the log

likelihood are possible:

• Newton and quasi-Newton methods — use the matrix of second derivatives

(or estimates) to approximate the log likelihood as a quadratic function of the

parameters. Move to the maximum of this approximation at each iteration.

Infeasible if there are many parameters (matrix too big); may not work well

anyway, if the likelihood is very non-quadratic.

• Conjugate gradient methods — cleverly choose good directions to look for the

maximum, moving to the maximum along that direction at each iteration.

• Gradient descent — always move in the direction of the gradient (vector of

partial derivatives). In the simplest scheme, we change w by some constant

times the gradient of the log likelihood. The original, and crudest, method,

but sometimes the best — it doesn’t need a big matrix of second derivatives,

and can be used “on-line”, without looking at all training cases at once.

Computing Derivatives of the Log Likelihood

Partial derivatives of the log likelihood with respect to the network parameters

are found by applying the chain rule backwards from the network output. Since

training cases are assumed to be independent, we calculate derivates separately

for each training case, then just sum them. I’ll denote minus the log likelihood

for just one training case by E, so that smaller E is better.

We first do “forward propagation”, computing the summed input to each hidden

unit, aj , then the values of the hidden units, zj , and finally the value of the

output unit, f :

aj = w
(1)
0j +

p
∑

k=1

w
(1)
kj xk

zj = tanh(aj)

f = w
(2)
0 +

m
∑

j=1

w
(2)
j zj

We then use “backpropagation” to find the derivatives of E with respect to f ,

with respect to zj , and with respect to aj . From these, we can find the derivatives

with respect all the components of w.

Derivatives of E With Respect to f , zj, and aj

To start, we find the derivative of E with respect to the network output, f .

If the response, y, is modeled as Gaussian with mean f and variance σ2, then

minus the log likelihood for just one case is E = (y − f(x,w))2/2σ2, and its

derivative with respect to f is
∂E

∂f
= (f − y) / σ2

Once we have computed ∂E/∂f , we work backward to (for all j) compute

∂E/∂zj , found assuming that w
(2)
j and the zj′ for j

′ 6= j are fixed:

∂E

∂zj
=

∂E

∂f

∂f

∂zj
= w

(2)
j

∂E

∂f

Next, we use the fact that tanh′(a) = 1− tanh(a)2 to work back to the

derivative of E with respect to aj , the summed input to hidden unit j:

∂E

∂aj
=

∂E

∂zj

∂zj
∂aj

= (1− z2j)
∂E

∂zj

If we had more than one hidden layer, we would continue working backwards,

finding the derivatives of E with respect to the values of all hidden units, and

with respect to the summed inputs for these hidden units.

Derivatives of E With Respect to w

We can find the derivative of E w.r.t. a parameter on a connection from unit A to

unit B by multiplying the value of A by the derivative of E w.r.t. the summed

input to B.

For w
(2)
1 , . . . , w

(2)
m :

∂E

∂w
(2)
j

=
∂E

∂f

∂f

∂w
(2)
j

= zj
∂E

∂f

Also, ∂E / ∂w
(2)
0 = ∂E / ∂f .

Similarly, for w
(1)
1j , . . . , w

(1)
pj :

∂E

∂w
(1)
kj

=
∂E

∂aj

∂aj

∂w
(1)
kj

= xk
∂E

∂aj

Also, ∂E / ∂w
(1)
0j = ∂E / ∂aj .

Maximizing the Likelihood by Simple Gradient Ascent

After randomly initializing the parameters, w, to small values, we maximize the

log likelihood by repeatedly doing the following, using some suitably chosen

“learning rate” or “stepsize”, η:

1. For each training case:

– Compute the values of the units by forward propagation.

– Compute the derivatives of E w.r.t. the unit values by backpropagation.

– Compute the derivatives of E w.r.t. the parameters from these results.

2. Sum these derivatives over all training cases, to get the gradient vector, g, of

minus the total log likelihood.

3. Change w by moving in the direction of (minus) this gradient, replacing w by

w − ηg.

If η is too big, the changes will “overshoot”, and end up decreasing the likelihood

rather than increasing it. We have to set η by trial-and-error.

On-line Learning

The procedure in the previous slide is sometimes called “batch” gradient ascent

learning, since the derivatives from the training cases are handled as one batch.

It’s also possible to do “on-line” learning, in which we update the parameters

based on each training case in turn. This may work better if the training cases

are redundant — many cases provide the same information. Batch learning then

wastes time looking at them all before doing anything.

However, for on-line learning to converge to a (local) maximum, we will have to

decrease η with time (or switch to batch learning once we’re near the maximum).

Actually, true on-line learning uses a new training case for each update — there is

no finite training set, but rather a continuous stream of training cases. This is the

situation for perceptual learning in humans.

Example of Simple Gradient Ascent Learning

Recall the previous example, with one input (ranging over (0, 1)), one real target

(equal to sin(4x) + noise), and 100 training cases.

I trained a MLP network with three hidden units for 100000 iterations of simple

gradient descent (η = 0.3). Here are plots of the log likelihood and of the 10

parameters as a function of iteration (log scale):

1 100 10000

−
11

0
−

10
5

−
10

0
−

95

iteration

lo
g

lik
el

ih
oo

d

1 100 10000

−
3

−
2

−
1

0
1

2

iteration

pa
ra

m
et

er
 v

al
ue

s

Blue lines are w
(1)
kj (k = 0 dotted). Green lines are w

(2)
j (j = 0 dotted).

Continuing the Example. . .

It may seem like the optimization has converged after 100000 iterations. But

what happens if we continue training for many more iterations?

1e+00 1e+02 1e+04 1e+06 1e+08

−
11

0
−

10
5

−
10

0
−

95

iteration

lo
g

lik
el

ih
oo

d

1e+00 1e+02 1e+04 1e+06 1e+08

−
5

0
5

10

iteration
pa

ra
m

et
er

 v
al

ue
s

This shows how tricky the MLP likelihood function can be! In practice, we don’t

try to find the absolute maximum, since with complex networks it is sure to

overfit the training data anyway. . .

Overfitting in This Example

Here is the true regres-

sion function, sin(4x), in

black, and the regression

functions defined by the

networks after training for

102 (violet), 103 (blue),

104 (green), 106 (orange),

and 108 (red) iterations.

The last two curves may

have slightly overfit the

data. Much more se-

vere overfitting can occur

when there are more in-

puts and/or more hidden

units.
0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

x

Avoiding Overfitting Using a Penalty

As for linear basis function models, we can try to avoid overfitting by maximizing

the log likelihood plus a penalty function.

For an MLP with one hidden layer, a suitable penalty to add to minus the log

likelihood might be

λ1

p
∑

k=1

m
∑

j=1

[

w
(1)
kj

]2
+ λ2

m
∑

j=1

[

w
(2)
j

]2

(Sometimes the penalty is multiplied by 1/2, to get rid of a factor of 2 in the

derivative of the penalty.)

We need to select two constants controlling the penalty, λ1 and λ2. Setting

λ1 = λ2 isn’t always reasonable, since a suitable value for λ1 depends on the

measurement units used for the inputs, whereas a suitable value for λ2 depends

on the measurement units for the response.

We might try S-fold cross-validation, but it may not work well, if each training

run goes to a different local maximum. So we might use a single split into

estimation and validation sets, with no re-training on the whole training set.

Neural Network Classification Models

We can also use a multilayer perceptron network as a discriminative classification

model. The output of the network, f(x,w), can be used in a logistic model for the

probability that a binary class variable, y, is 1:

P (y = 1 |x, w) =
[

1 + exp(−f(x,w))
]

−1
= σ(f(x,w))

where σ(a) = 1/(1 + e−a).

The derivative of σ is σ′(a) = σ(a) (1−σ(a)) = σ(a)σ(−a). We use this when

computing derivatives of minus the log likelihood by backpropagation.

We can use a probit model for a binary class instead, if we prefer it.

When there are more than two classes, we can use a “multinomial logit” (also

called “softmax”) model. With K classes, we use a network with K outputs,

fk(x,w) for k = 1, . . . ,K. The class probabilities are then defined to be

P (y = k |x, w) =
exp(fk(x,w))

K
∑

k′=1

exp(fk′(x,w))

Dimensionality Reduction

Dimensionality Reduction

High dimensional data is often “really” lower-dimensional: For example:

0

0.2

0.4

0.6

0.8 1

0.517

0

10

20

0 0.1 0.2

These points all lie near a curve. Perhaps all that matters is where the points lie

on this curve, with the small departures from the curve being unimportant.

If so, we can reduce this 2D data to one dimension, by just projecting each point

to the nearest point on the curve. Specifying a point on the curve requires just

one coordinate. For example, the blue point at (0.9, 18) is replaced by 0.517.

Manifolds and Embedding

In general, the p-dimensional data points might lie near some M -dimensional

surface, or manifold.

Points in an M -dimensional manifold can (in each local region) be specified by

M coordinates. Eg, points on a sphere can be described by “latitude” and

“longitude” coordinates, so the sphere is a 2D manifold.

A p-dimensional “embedding” of the manifold is a map from points on the

manifold to p-dimensional space.

Finding an embedding of a lower-dimensional manifold that the data points lie

near is one form of unsupervised learning. We’d like to be able to map each point

to the coordinates of the point closest to it on the manifold.

Some methods don’t really find a manifold and an embedding — they just assign

M coordinates to each p-dimensional training case, but don’t have any way of

assigning low-dimensional coordinates to new test cases. Such methods may still

be useful for visualizing the data.

Hyperplanes

In one simple form of dimensionality reduction, the manifold is just a hyperplane.

An M -dimensional hyperplane through the origin can be specified by a set of M

basis vectors in p-dimensional space, which are most conveniently chosen to be

orthogonal and of unit length.

If u1, . . . , uM are such a basis, the point in the hyperplane that is closest to some

p-dimensional data point x is the one with the following coordinates (in terms of

the basis vectors):

uT

1x, . . . , u
T

Mx

If we want a hyperplane that doesn’t go through the origin, we can just translate

the data so that this hyperplane does go through the origin.

Principal Component Analysis

Principal Component Analysis

Principal Component Analysis (PCA) is one way of finding a hyperplane that is

suitable for reducing dimensionality.

With PCA, the first basis vector, u1, points in the direction in which the data has

maximum variance. In other words, the projections of the data points on u1,

given by uT

1x1, . . . , u
T

1xN , have the largest sample variance possible, for any

choice of unit vector u1.

The second basis vector, u2, points in the direction of maximum variance subject

to the constraint that u2 be orthogonal to u1 (ie, uT

2u1 = 0).

In general, the i’th basis vector, also called the i’th principal component, is the

direction of maximum variance that is orthogonal to the previous i−1 principal

components.

There are p principal components in all. Using all of them would just define a

new coordinate system for the original space. But if we use just the first M ,

we can reduce dimensionality. If the variances associated with the remaining

principal components are small, the data points will be close to the hyperplane

defined by the first M principal components.

Finding Principal Components

To find the principal component directions, we first centre the data — subtracting

the sample mean from each variable. (We might also divide each variable by its

sample standard deviation, to eliminate the effect of arbitrary choices of units.)

We put the values of the variables in all training cases in the n× p matrix X.

We can now express p-dimensional vectors, v, in terms of the eigenvectors,

u1, . . . , up, of the p× p matrix XTX. Recall that these eigenvectors will form an

orthogonal basis, and the uk can be chosen to be unit vectors. I’ll assume they’re

ordered by decreasing eigenvalue. We’ll write

v = s1u1 + · · ·+ spup

If v is a unit vector, the projection of a data vector, x, on the direction it defines

will be xTv, and the projections of all data vectors will be Xv. The sample

variance of the data projected on this direction is

(1/n)(Xv)T (Xv) = (1/n)vT (XTX)v = (1/n)vT (s1λ1u1 + · · ·+ spλpup)

= (1/n)(s21λ1 + · · ·+ s2pλp)

where λk is the eigenvalue associated with the eigenvector uk, and λ1 ≥ · · · ≥ λp.

Finding Principal Components (Continued)

We just saw that the sample variance of the data projected in direction of a unit

vector, v, is

(1/n)(s21λ1 + · · ·+ s2pλp)

To find the first principal component direction, we maximize this, subject to v

being of unit length, so s21 + · · ·+ s2p = 1. The maximum occurs when s21 = 1 and

other sj = 0, so that v = ±u1.

To find the second principal component, we look at unit vectors orthogonal to

u1 — ie, with s1 = 0. The unit vector maximizing the variance subject to this

constraint is ±u2.

Similarly, the third principal component direction is ±u3, etc.

More on Finding Principal Components

So we see that we can find principal components by computing the eigenvectors of

the p× p matrix XTX, where the n× p matrix X contains the (centred) values

for the p variables in the n training cases. We choose eigenvectors that are unit

vectors, of course. The signs are arbitrary.

Computing these eigenvectors takes time proportional to p3, after time

proportional to np2 to compute XTX.

What if p is big, at least as big as n? Eg, gene expression data from DNA

microarrays often has n ≈ 100 and p ≈ 10000. Then XTX is singular, with

p− n+ 1 zero eigenvalues. There are only n− 1 principal components, not p.

We can find the n− 1 eigenvectors of XTX with non-zero eigenvalues from the

eigenvalues of the n× n matrix XXT , in time proportional to n3 + pn2. If v is an

eigenvector of XXT with eigenvalue λ, then XTv is an eigenvector of XTX (not

necessarily of unit length), with the same eigenvalue:

(XTX)(XTv) = XT (XXT)v = XTλv = λ(XTv)

So PCA is feasible as long as either of p or n is no more than a few thousand.

What is PCA Good For?

Seen as an unsupervised learning method, the results of PCA might be used just

to gain insight into the data.

For example, we might find the first two principal components, and then produce

a 2D plot of the data. We might see interesting structure, such as clusters.

PCA is also used as a preliminary to supervised learning. Rather than use the

original p inputs to try to predict y, we instead use the projections of these inputs

on the first M principal components. This may help avoid overfitting.

It certainly reduces computation time.

There is no guarantee that this will work — it could be that it is the small

departures of x from the M dimensional hyperplane defined by the principal

components that are important for predicting y.

Example: Zip Code Recognition

I tried finding principal componenents for data on handwritten zip codes (US

postal codes). The inputs are pixel values for an 16× 16 image of the digit, so

there are 256 inputs. There are 7291 training cases.

Here are plots of 1st versus 2nd, 3rd versus 4th, and 5th versus 6th principal

components for training cases of digits “3” (red), “4” (green), and “9” (blue):

−5 0 5

−6
−4

−2
0

2
4

6
8

PC1

P
C

2

−6 −4 −2 0 2 4 6

−5
0

5

PC3

P
C

4

−4 −2 0 2 4 6

−6
−4

−2
0

2
4

PC5

P
C

6

Clearly, these reduced variables contain a lot of information about the identity of

the digit — probably much more than we’d get from any six of the original inputs.

Pictures of What the Principal Components Mean

Directions of principal components in input space are specified by 256-dimensional

unit vectors. We can visualize them as 16× 16 “images”. Here are the first ten:

Factor Analysis

Factor Analysis — A Probabilistic Model Related to PCA

PCA doesn’t provide a probabilistic model of the data. If we use M = 10

principal components for data with p = 1000 variables, it’s not clear what we’re

saying about the distribution of this data.

A latent variable model called factor analysis is similar, and does treat the data

probabilistically.

We assume that each data item, x = (x1, . . . , xp) is generated using M latent

variables z1, . . . , zM . the relationship of x to z is assumed to be linear.

The zi are independent of each other. They all have Gaussian distributions with

mean 0 and variance 1. (This is just a convention — any mean and variance

would do as well.)

An observed data point, x, is obtained by

x = µ + Wz + ǫ

where µ is a vector of means for the p components of x, W is a p×M matrix,

and ǫ is a vector of p “residuals”, assumed to be independent, and to come from

Gaussian distributions with mean zero. The variance of ǫj is σ2
j .

The Distribution Defined by a Factor Analysis Model

Since the factor analysis model expresses x as a linear combination of

independent Gaussian variables, the distribution of x will be multivariate

Gaussian. The mean vector will be µ. The covariance matrix will be

E
(

(x− µ)(x− µ)T
)

= E
(

(Wz + ǫ)(Wz + ǫ)T
)

= E
(

(Wz)(Wz)T + ǫǫT + (Wz)ǫT + ǫ(Wx)T
)

Because ǫ and z are independent, and have means of zero, the last two terms have

expectation zero, so the covariance is

E
(

(Wz)(Wz)T + ǫǫT) = WE(zzT)W T + E(ǫǫT) = WW T +Σ

where Σ is the diagonal matrix containing the residual variances, σ2
j .

This form of covariance matrix has Mp+ p free parameters, as opposed to

p(p+1)/2 for a unrestricted covariance matrix. So when M is small, factor

analysis is a restricted Gaussian model.

Fitting Factor Analysis Models

We can estimate the parameters of a factor analysis model (W and the σj) by

maximum likelihood.

This is a moderately difficult optimization problem. There are local maxima, so

trying multiple initial values may be a good idea. One way to do the optimization

is by applyng EM, with the z’s being the unobserved data.

When there is more than one latent factor (M > 1), the result is non-unique,

since the latent space can be rotated (with a corresponding change to W) without

affecting the probability distribution of the observed data.

Sometimes, one or more of the σj are estimated to be zero. This is maybe not too

realistic.

Factor Analysis and PCA

If we constrain all the σj to be small and equal, the results of maximum likelihood

factor analysis are essential the same as PCA. The mapping x = Wz defines an

embedding of an M -dimensional manifold in p-dimensional space, which

corresponds to the hyperplane spanned by the first M principal components.

But if the σj can be different, factor analysis can produce much different results

from PCA:

• Unlike PCA, maximum likelihood factor analysis is not sensitive to the units

used, or other scaling of the variables.

• Lots of noise in a variable (unrelated to anything else) will not affect the

result of factor analysis except to increase σj for that variable. In contrast, a

noisy variable may dominate the first principle component (at least if the

variable is not rescaled to make the noise smaller).

• In general, the first M principal components are chosen to capture as much

variance as possible, but the M latent variables in a factor analysis model are

chosen to explain as much covariance as possible.

