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Large Margin Classifiers



The Large Margin Hard Classifier

Some classification methods produce only a predicted class for a test case, with

no probability distribution for that class.

Large margin classifiers are in this category. They are the basis for the popular

Support Vector Machine (SVM) classifiers.

In their simplest form, large margin classifiers apply only to perfectly separable

binary classification problems, in which there is a hyperplane that separates the

training cases in one class from the training cases in the other class.

There will usually be many hyperplanes separating the classes. The idea is to pick

the separating hyperplane that has the largest margin — the minimum distance

of a training case from the line.



An Illustration with Two Inputs

Here is a large margin classifier in two dimensions (where a hyperplane is a

straight line). There are four training cases in Class −1 (white) on the left, and

three in Class +1 (black) on the right. The dark line is the separating hyperplane,

used to predict the class of a test case. The lighter lines show the margin.



Finding the Separating Hyperplane with Largest Margin

We can define a hyperplane by the equation wTx+ b = 0. We can use w and b to

classify test cases to the class sign(wTx+ b). (We’ll use −1 and +1 as class labels.)

Note that negating both w and b will swap which side of the hyperplane has

which class, and multiplying both w and b by any positive constant won’t change

classifications.

When finding w and b from the training cases, we will impose the constraint that

all training cases are classified correctly — that is,

yi(w
Txi + b) > 0, for i = 1, . . . , n

But we want to also maximize the margin, which is

min
i=1,...,n

yi(w
Txi + b) / ||w||

This is equivalent to the following optimization problem:

minimize ||w||2, subject to yi(w
Txi + b) ≥ 1 for i = 1, . . . , n

(The minimizaton will shrink w to where at least one inequality above is an

equality, at which point the margin will be 1/||w||, so maximizing the margin is

the same as minimizing ||w||2.)



Characteristics of the Maximum Margin Separating Hyperplane

The previous slide characterizes the maximum margin hyperplane as minimizing a

quadratic function, subject to linear inequality constraints.

This is a convex optimization problem. It has a unique solution, which can be

found reasonably efficiently by standard methods (or more efficiently using

specialized methods).

The solution is locally sensitive to a subset of the training cases, called the

support vectors — typically, but not always, less (often much less) than the full

set of training cases.

Of course, all training cases have to be looked at before the support vectors can

be identified. But when there are only a few support vectors, the computations

do go faster.



Why Might a Large Margin Classifier be Good?

The maximum margin separating hyperplane seems intutively like it should be

better than some other separating hyperplanes, such as one that goes very close

to a training point.

It’s also the same as you get from logistic regression with coefficients that

maximize the log likelihood minus an infinitesimal quadratic penalty.

Some theorists have attempted to justify large margin classifiers using

“VC-dimension” arguments — that relate to how much potential there is for

overfitting — but it’s not clear these arguments actually succeed.

Perhaps one can see the large margin classifier as approximating Bayesian

predictions (based on a vague prior distribution)...



Comparison with a Bayesian Hard Linear Classifier

The data set in the earler slide illustrating a large margin classifier is the same

as the one I used in the introduction to Bayesian inference. Here from that

demonstration is the curve where the classes have equal predictive probability,

together with the maximum margin classifie:



Support Vector Machines



Another Way to Find the Hyperplane with Largest Margin

Recall that we if define a hyperplane by the equation wTx+ b = 0, we can find

the maximum margin hyperplane by solving the following optimization problem:

minimize ||w||2, subject to yi(w
Txi + b) ≥ 1 for i = 1, . . . , n

We can always write

w =
n∑

i=1

aixi + δ

where δTxi = 0 for all i = 1, . . . , n, for some (not necessarily unique) set of ai.

With this representation of w,

||w||2 =
( n∑

i=1

aixi + δ
)

T
( n∑

i′=1

ai′xi′ + δ
)

=
n∑

i=1

n∑

i′=1

aiai′(x
T

i xi′) + ||δ||2

and

yi(w
Txi + b) = yi

( n∑

i′=1

ai′(x
T

i xi′) + b
)

Since the constraints don’t depend on δ, the minimization will set δ = 0, so we

can assume that w =
n∑

i=1

aixi.



Another Way to Find the Hyperplane. . . (Continued)

So we see that we can find w =
n∑

i=1

aixi and b as follows:

minimize
n∑

i=1

n∑

i′=1

aiai′(x
T

i xi′),

subject to yi

( n∑

i′=1

ai′(x
T

i xi′) + b
)

≥ 1 for i = 1, . . . , n

This is also a quadratic programming problem — minimize a quadratic function

of the ai subject to linear constraints on the ai and b — which could be solved

by standard (and fairly efficient) methods.

However, the solution may not be unique (though the resulting w is). If the

problem is formulated a bit differently, the result can be made unique, and often

many of the ai will be zero (with non-zero ai only for the support vectors).

The formulation above does show one crucial property — the minimization

depends only on inner products of input vectors (ie, on xT

i xi′). Predictions for

test cases also depend only on such inner products, since we will classify x∗

according to the sign of wTx∗ + b =
n∑

i=1

ai(x
T

∗
xi) + b.



Large Margin Classifiers Using Basis Functions

Rather than find a large margin classifier based on the original input vector, x,

we can use a vector of basis function values, φ(x) = [φ1(x) φ2(x) · · · φm(x)]T .

The classes may be separable by a hyperplane in this space even if they aren’t in

the original space.

Finding a1, . . . , an and b can be done as before, using inner products, φ(xi)
Tφ(xi′).

A test case with input vector x∗ is classified by the sign of
n∑

i=1

ai (φ(x∗)
Tφ(xi)) + b.

Since all that matters are these inner products, we can define

K(x, x′) = φ(x)Tφ(x′) =
m∑

j=1

φj(x)φj(x
′)

and then look at K(xi, xi′) for training cases i and i′, and K(x∗, xi) for a test case.

So once we have a formula for K(x, x′), we can forget about the φ functions.

Classification (and regression) methods based on this “kernel trick” are known as

Support Vector Machines (abbreviated to “SVM”).



Letting the Number of Basis Functions Go to Infinity

Since all we need is a formula for the “kernel function”,

K(x, x′) =
m∑

j=1

φj(x)φj(x
′)

we can consider letting the number of basis functions, m, go to infinity, as long

the resulting infinite sum has a finite limit, and can be computed efficiently.

This is essentially identical to what we did earlier for Gaussian process models.

The noise-free covariance function corresponding to a Bayesian linear basis

function model with independent zero-mean normal priors for coefficients, with

the variance of the coefficient for φj being ω2

j , was found to be

K(x, x′) =
m−1∑

j=0

ω2

jφj(x)φj(x
′)

This becomes the same as above if we absorb a factor ωj into the definition of φj

(and replace 0 to m−1 with 1 to m).



Possible Kernel Functions

The possible kernel functions for a support vector machine are the same as the

possible covariance functions for a Gaussian process model — all those that

produce positive semi-definite matrices at any set of points.

Mercer’s Theorem says that all such positive definite kernels can be represented

in the form K(x, x′) =
∑

φj(x)φj(x
′), though sometimes all but a finite number

of the φj will be identically zero.

So the class of models defined using linear basis functions is the same as the class

of models defined using a kernel/covariance function.

Commonly used kernel functions include K(x, x′) = (1+ xTx′)d, corresponding to

polynomial basis functions to degree d, and K(x, x′) = exp(−ρ2||x− x′||2).

Note that for an SVM (unlike for a Gaussian process), multiplying the kernel

function by a positive constant does not change things.



More Elaborations on Support Vector Machines

• Which kernel function is best is usually not clear. Cross validation can be

used to choose one.

• Finding a separating hyperplane (even if always possible in an infinite

dimensional space) may not be a good idea, when class labels are actually

“noisy”. Introducing “slack variables” allows for some mis-classified points.

• Classification problems with more than two classes can be handled in various

ways — eg, combining results from pairwise binary classifiers.

• Regression problems can be handled by using a “loss” function that is

“ǫ-insensitive” — where small errors cost zero.



Support Vector Machines vs. Gaussian Process Models

SVM and GP models have a strong common element — the positive semi-definite

kernel/covariance function. How do they compare otherwise?

Advantages of support vector machines:

• The number of support vectors is often much less than the total size of the

training set, reducing computation time for training and prediction.

• Binary classification can be done directly, with a relatively fast optimization

procedure, whereas Gaussian process classification requires handling a

distribution over “latent variables”.

Advantages of Gaussian process models:

• The covariance function has a probabilistic interpretation — one can sample

from the prior over functions that it defines — which can guide the choice of

a suitable covariance function.

• Finding good parameters of the covariance function can be done by maximum

likelihood (or by Bayesian methods), without the need for cross validation.

• Classification problems with more than two classes can be handled naturally.

• Regression can be done using a conventional Gaussian model for residuals.



Kernel PCA



PCA on Basis Function Values

Rather than do PCA on the original vector of p values, x, we can do it on the

values of m basis functions, φ(x) = [φ1(x), . . . , φm(x)].

If m > p, the basis function values will lie in a p-dimensional space embedded in

an m-dimensional space. This would make modeling the data as a multivariate

Gaussian be drastically incorrect, but PCA makes no distributional assumptions

— it just finds the directions of maximum sample variance.

If m is big, we should of course use the trick that was presented earlier for when

p is big — find the eigenvectors of the n× n matrix XXT rather than the

eigenvectors of the p× p matrix XTX.

Note that even if the x values have been centred to have sample mean of zero,

the φ(x) values will probably not be centred. So we’ll have to subtract the sample

mean for each basis function before finding eigenvectors.



Details of PCA on Basis Function Values

Let Φ be the n×m matrix of basis function values for the n observed items, so

Φik = φk(xi).

If we let 1n be a vector of n ones, we can get a row vector of sample means of the

basis functions as (1/n)1T

nΦ. The matrix of centred basis function values can then

be written as

Φ̃ = Φ − 1n[(1/n)1
T

nΦ] = [In×n − 1n×n/n] Φ

where In×n is the n× n identity matrix and 1n×n is the n× n matrix of all ones.

We now find the eigenvectors of

Φ̃Φ̃T = [In×n − 1n×n/n] ΦΦ
T [In×n − 1n×n/n]

If v is such an eigenvector, of length one, with eigenvalue λ, then Φ̃Tv/
√
λ is an

eigenvector of Φ̃T Φ̃, also of length one, and with eigenvalue λ.



Projections of Basis Function Vectors for Test Points

What we’re usually interested in are the projections of the basis function vectors

for test points on the principal components.

Let Φ̃Tv/
√
λ be a principal component direction, where v is an eigenvalue of Φ̃Φ̃T

with eigenvalue λ, and recall that Φ̃ = [In×n − 1n×n/n] Φ.

The projection in this direction of the centred basis function values of a point x∗ is

[φ(x∗)
T − (1/n)1T

nΦ] Φ̃
Tv/

√
λ = [φ(x∗)

T − (1/n)1T

nΦ]Φ
T [In×n − 1n×n/n] v/

√
λ

= [φ(x∗)
TΦT − 1

T

nΦΦ
T/n] [In×n − 1n×n/n] v/

√
λ



Applying the Kernel Trick

All these operations involve φ(x) only via inner products. We can define

K(x, x′) = φ(x)Tφ(x′)

and then define the n× n matrix K by Kij = K(xi, xj). We then can compute

K̃ = Φ̃Φ̃T = [In×n − 1n×n/n]K [In×n − 1n×n/n]

If the n× n matrix K̃ has unit length eigenvectors v1, v2, . . . , vn with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn, then the projection of a data point x∗ on the m’th principal

component is

[k − 1
T

nK/n] [In×n − 1n×n/n] vm/
√

λm

where k is the vector of dimension n with ki = K(x∗, xi).

Since φ no longer appears explicitly in these formulas, we can let the number of

basis functions go to infinity, as long as we know how to compute K(x, x′).



Example of Kernel PCA

Kernel PCA for 2D data from two classes, using K(x, x′) = exp(−||x− x′||2).
Original data and pairs of projections on PC1, PC2, and PC3:
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